TEMIC SPARC RT

SPARC Radiation Tolerant Processor Chip Set (CBA)
Design Considerations List

This document will often be released. Please refer to it regularly.

1. Introduction

1.1 Scope

This document describes the current identified specification deviations (as off June 15, 98) for the TSC691E (rev
C), TSC692E (rev B) and TSC693E (rev A), with a work around proposal, when available.

1.2 Applicable documents
TSC691E specification, rev |, MHS September 1998
TSC692E specification, rev H, MHS December 1996

TSC693E specification, rev D, MHS April 1997

2. Integer Unit TSC691E

No deviation identified.

3. Floating-point unit TSC692E

3.1 Store Double floating-point instruction

3.1.1 Problem description

It occurs in the following sequence:

LD [...], %fd1 or LDD [...], %fd1l or FPop [...], %fd1l

0 (for LD and LDD) or up to 80 instructions (for FPop)
STD %fd2, [...]

If there is no dependency in the whole sequence and the first instruction writes its result into the register file upon
the STDF Write stage, then the STDF instruction may store the wrong data.

Rev. E - March 1999

i

SPARC RT

TEMIC

L

miesamdnecisrs

3.1.2 Work Around
Do not use STDF instructions, use two STF instead.

3.1.3 Example of failing code

I initialization
I

init:

set datal,%l7

set 0x000000100,%r2

I
I example 1

I Work around:

! replace: std %f0, [%I17]
! by: st %f0, [%I7]

! st %f1 [%l7+4]
I

example_1:

ldd [%I7+16], %f0
nop

nop

nop

ldd [%I7+24], %f2
std %f0, [%I7]

! %f0,f1=0x4040000040800000

! %f2,f3=0x7fd5555555554000
%f0,f1=0x4040000040800000

nop

nop

nop

!

I example 2

I Work around:

! replace: std %f4, [%I7+8]
! by: st %f4, [%I7+8]
! st %f 5, [%I7+12]
I

example_2:

ldd [%17+32], %f4
nop

nop

nop

fadds %f0, %f0, %f3
nop

nop

nop

nop

std %f4, [%I7+8]
add %r2, %r2, %r2
nop

nop

end:

! %f4,f5=0xb58637bd11000007

%f4,f5=0xb58637bd11000007
! required

Rev. E - March 1999

TEMIC SPARC RT

I data segment
I

.align 8

datal:

.word Oxfffffff ! address=[%I7], store destination example 1
.word Oxffffffff

.word Oxffffffff | address=[%I7+8], store destination example 2
.word Oxffffffff

.word 0x40400000 I address=[%I7+16], %f0 example 1 & 2
.word 0x40800000

.word 0x7fd55555 ! address=[%I7+24], %f2 example 1

.word 0x55554000

.word 0xb58637hd | address=[%I7+32], %f4 example 2

.word 0x11000007

3.2 Store Floating-point Status Register with waitstates

3.2.1 Problem description

It occurs in the following sequence with waitstates:

LD %fsr

ST %fsr

The Store floating-point Status Register instruction will store the previous value of FSR and not the updated one.
3.2.2 Work Around

Insert a NOP between these two instructions:

LD %fsr

NOP

ST %fsr

3.2.3 Example of failing code

!
I initialization
|
init:

set datal,%I0
Id [%010],%fsr 1 %fsr=0x0f080000

Rev. E - March 1999

K

SPARC RT

TEMIC

semicandounciars

example (ith wait states on instruction fetch)
Work around:

between the following two instructions:

!

!

!

!

! Id [%6l0],%fsr

! st %fsr,[%l0+4]
! insert a nop:

! Id [%610],%fsr

! nop

! st %fsr,[%l0+4]
!

example:

nop

nop

nop

Id [%610+4],%fsr ! %fsr=0xcf080000
st %fsr,[%10+8] I Check writing
nop

nop

nop

end:

I segment "data"

.align 8

datal:

.word
.word
.word

0x0f080000
0xcf080000
Oxffffffff

! address=[%l0], %fsr value_1
! address=[%I0+4], %fsr value_2
I address=[%I0+8], %fsr checking value

3.3 Load and Load Double Floating-point instructions with waitstates

3.3.1 Problem description

It occurs in the following sequence with waitstates on DATA loaded:

LD %fdl or LDD %fd1

FPop %fdl or ST %fd1l or STD %fd1l

If a Floating-point Load instruction is immediately followed by a Floating-point operation or Floating-point Store

instruction which has an operand conflict with the Load instruction, a hardware interlock (FHOLD cycle) is

generated with the MHOLD cycle of the DATA loaded (waitstate assertion). In this case the FPop or STF or
STDF instruction is executed with the previous data of the %fd1 register.

Rev. E - March 1999

T

TEMIC

semicandounciars

SPARC RT

3.3.2 Work Around

Insert a NOP between these two instructions:
LD %fd1l or LDD %fd1

NOP

FPop %fd1l or ST %fd1l or STD %fd1

3.3.3 Example of failing code

I initialization
I

init:
set datal,%Il0

Id [%610],%fsr ! %fsr=0x0f080000
Id [%610+4],%f10 ! %f10=0x00000000

example (vith wait states on instruction fetch)
Work around:
between the following two instructions:

!

!

!

!

! Id [%610+12],%f10

! st %f10,%f8,%f10

! insert a nop:

! Id [%610+12],%f10

! nop

! st %f10,%f8,%f10

!

example:

Id [%610+8],%f8 ! %f8=0x3febab55
nop

nop

nop

Id [%610+12],9%6f10 1 %f10=0x40000000
fsubs %f10,%f8,%f10 ! %f10=0x3e22a558
nop

nop

nop

st %f10,[%I0+16] I %f10=0x3e22a558
nop

nop

nop

end:

Rev. E - March 1999

SPARC RT TEMIC

I segment "data"
I

.align 8

datal:

.word 0x0f080000 ! address=[%l0], %fsr value

.word 0x00000000 I address=[%I0+4], %f10 init value

.word 0x3febab55 ! address=[%I0+8], %f8 = %rs2

.word 0x40000000 ! address=[%I0+12], %f10 = %rs1

word Oxffffffff I address=[%I10+16], %f10 = %rd (fsubs result)

3.4 Store and Store Double Floating-point instructions with waitstates

3.4.1 Problem description

It occurs in the following sequence with waitstates:

FPop [...], %fdl

up to 80 instructions

ST %fd2, [...] or STD %fd2, [...]

If a Floating-point operation is followed after some cycles by a Floating-point Store or Store Double instruction
without operand conflicts and any kind of waitstate holds the STF or STDF in its E stage as the FPop writes its
result back into the register file, then the STF or STDF instruction may store the wrong data.

3.4.2 Work Around

Do not use waitstates (do not assert any hold signal) when using the TSC692E.

3.4.3 Example of failing code

|
I initialization
!
init:

set datal,%I7

I example (ith wait states)
I Work around for this example:
between the following two intructions:

fadds %f0,%f0,%f2
insert a nop:

fadds %f0,%f0,%f2

nop

nop

|
|
|
|
|
! nop
|
|
|
|
|

Rev. E - March 1999

/

TEMIC

semicandounciars

SPARC RT

example:

Idd [%l7], %f0
Idd [%l7+8], %f2
Idd [%l7+16], %f4
nop

nop

nop

fadds %f0, %f0, %f2
nop

nop

Id [%g0], %g0
st %f4, [%6I7+24]
nop

nop

nop

end:

1 %f0,f1=0x4040000040800000
1 %f2,f3=0x7fd5555555554000
! %f4,f5=0xb58637bd11000007

I required
I %f4=0xb58637hbd

I segment "data”
|

.align 8

datal:

.word 0x40400000
.word 0x40800000
.word 0x7fd55555
.word 0x55554000
.word 0xb58637hbd
.word 0x11000007
.word Oxffffffff
.word Oxffffffff

I address=[%l7], %f0,f1 init value
! address=[%I7+8], %f2,f3 init value
! address=[%lI7+16], %f4,f5 init value

I address=[%I7+24], %f4 checking value

3.5 Store Double Floating-point Queue instruction with waitstates

3.5.1 Problem description

It occurs in the following instruction with waitstates on instruction fetch:

STD %fq, [...]

Always store the wrong instruction.

3.5.2 Work Around

Never use STDFQ instruction with waitstates on instruction fetch.

3.5.3 Example of failing code

I initialization
|

Rev. E - March 1999

SPARC RT TEMIC

init:

set datal,%I7

I example (with wait states on instruction fetch)
!

example:

ldd [%I7], %f0 1 9%f0,f1=0x4040000040800000
nop

nop

nop

fadds %f0, %f0, %f2

nop

nop

nop

std %fq, [%I7+8 ! %fg=(example+16)/ 85a00820
nop

nop

nop

end:

I segment "data"
I

.align 8

datal:

.word 0x40400000 I address=[%I7], %f0,f1 init value
.word 0x40800000

.word Oxffffffff | address=[%I7+8], %fg checking value
.word Oxffffffff

3.6 Store Double Floating-point Queue instruction with disabled parity checking

3.6.1 Problem description

It occurs in the following instruction witlbt02MODE = 0:

STD %fq, [...]

Generation of internal parity is not implemented for the Floating-point Queue instruction data path. Then, in case
of wrong parity stored in the Floating-point Queue, a STDFQ leads to a Non-Restartable Hardware Error Exception,
instead of bringing back to Execute mode!

3.6.2 Work Around

Use only RT mode §02MODE = 1).

Rev. E - March 1999

TEMIC

semicandounciars

SPARC RT

3.6.3 Example of failing code

I initialization
I

init:
set datal,%Il7

I example
I

example:

Idd [%I7], %fO
nop

nop

nop

fadds %f0, %f0, %f2
nop

nop

nop

std %fq, [%I7+8]
nop

nop

nop

end:

! %f0,f1=0x4040000040800000

I %fq=(example+16) / 0x85a00820

I segment "data"
|

.align 8

datal:

.word 0x40400000
.word 0x40800000
.word Oxffffffff
.word Oxffffffff

! address=[%l7], %f0,f1 init value

I address=[%I7+8], %fq checking value

3.7 Floating-point instruction sequence with one waitstate

3.7.1 Problem description

It may occur in the following sequence ahy TSC692Einstructions with waitstates:

FPop0
FPopl

FPop2

Rev. E - March 1999

R

SPARC RT TEMIC

If a Floating-point instruction FPopl generates (required by Fpop0) a hardware interlock (one FHOLD cycle) and
is followed by any other Floating-point instruction FPop2 fetched with one waitstate, FPop2 fetch will fail.

3.7.2 Work Around

Insert a NOP between two Floating-point instructions FPopl and FPop2:
FPop0

FPop1l

NOP

FPop2

3.7.3 Example of failing code

!
I initialization
|
init:

set datal,%l7

|

I example (with wait states on instruction fetch)
I Work around:

! between the following two intructions:
! fmovs %f0,%f0

! Idd [%6l7+8],%f4
! insert a nop:

! fmovs %f0,%f0

! nop

! ldd [%17+8],%f4
|

example:

Idd [%I7], %fO ! %f0,f1=0x4000000040400000

Idd [%I7], %f4 1 %f4,f5=0x4000000040400000

Idd [%I7], %f6 1 %f6,f7=0x4000000040400000

nop

nop

nop

fdivd %f0,%f6,%f0 I %f0= 0x3ff0000000000000 (=1)
fmovs %f0,%f0 I => hardware interlock generated

lad [%17+8],%f4 I FAIL: writting %f0 instead of %f4

nop

nop

nop

std %f4,[%I7+16] I %f4,f5=0x7fd5555555554000 expected
std %f0,[%I7+24] I %f0,f1=0x3ff0000000000000 expected
10

Rev. E - March 1999

TEMIC

semicandounciars

SPARC RT

nop
nop
nop
end:

I segment "data"
I

.align 8

datal:

.word 0x40400000
.word 0x40800000
.word 0x7fd55555
.word 0x55554000
.word Oxffffffff
.word Oxffffffff
.word Oxffffffff
.word Oxffffffff

I address=[%I7], %f0,f1, %f4,f5 and %f6,f7 init value
! address=[%I7+8], %f4,f5 wanted loading value
I address=[%I7+16], %f4,f5 checking value

I address=[%I7+24], %f0,f1 checking value

3.8 Floating-point Compare - Floating-point instruction sequence with waitstates

3.8.1 Problem description

It occurs in the following sequence of instructions with waitstates:

FCMP

FPop

If a Floating-point compare instruction FCMP is immediately followed by any other Floating-point instruction

FPop with hardware interlock between both, and if a waitstate holds the FCMP in its E stage, and if the FCMP
generates an exception, then the IU will trap on the FPop and return from trap will be done at the wrong address.
For instance, if the FPop should have been re-executed after return, it is the FCMP that will be! One of the risks

is then an unwanted infinite loop if the condition triggering the exception is still true.

3.8.2 Work Around

Insert a NOP after a FCMP instruction:

FCMP

NOP

3.8.3 Example of failing code

I trap
I

FP_exception:

! FPop re-executed after return

Rev. E - March 1999

11

K

SPARC RT

TEMIC

semicandounciars

nop

jmpl %l1, %g0
rett %lI2

nop

[

I initialization

!

init:

set datal,%Il7
Id [%6I1],%fsr

! %fsr=0x0f880000

example (with wait states on instruction fetch)

I
!

I Work around:

! between the following two intructions:

! fcmpes %f0,%f2

! fadds %f0,%f0,%f20
! insert a nop:

! fcmpes %f0,%f2

! nop

! fadds %f0,%f0,%f20
I

example:

ldd [%I7+8], %f0
ldd [%l7+16], %f2
nop
nop
nop
nop

fcmpes %f0, %f2
fadds 9%f0,%f0,%f20

nop
nop
nop

end:

! %f0,f1=0xOfffffffffffffff
! %f2,f3=0x7fd5555555554000

! fexc pending (return address if wait states)
! trap taken (return address if ok)

I segment "data”
|

.align 8

datal:

.word 0x0f880000
.word Oxffffffff
.word Oxffffffff
.word Oxffffffff
.word 0x7fd55555
.word 0x55554000

! address=[%I7+8], %fsr init value
! address=[%I7+8], %f0,f1 init value

! address=[%I7+16], %f2,f3 init value

12

Rev. E - March 1999

TEMIC SPARC RT

3.9 FNULL signals assertion with waitstates

3.9.1 Problem description

FNULL may be wrongly asserted after or duringV\HOLD, BHOLD, CHOLD or CCCV cycle. The IU frozen

too early byFHOLD may not output the next address and the Memory Controller may indefinitely restart the same
bus cycle. This may prevent usage of the TSC692E with other Memory Controller than the MEC.

FNULL is not a MEC input.

3.9.2 Work Around

Do not use the TSC692E without the MEC.

3.10FHOLD signal dead-lock with coprocessor

3.10.1 Problem description

BHOLD, CHOLD and CCCYV signals wrongly preveRHOLD deassertion.

This may lead to dead-lock when a coprocessor is used. For instance, a sequence as
CCMP

FPop

may show CCCV andFHOLD asserted in the same cycleHOLD is wrongly locked by CCCV which in turn is
locked by the CCMP being frozen ByHOLD in its Write stage.

3.10.2 Work Around

Do not use coprocessor with the TSC692E.

3.11 FCCV signal dead-lock with waitstates and coprocessor

3.11.1 Problem description

FCCV may be wrongly deasserted durindiddOLD, BHOLD, CHOLD or CCCYV cycle.
This may lead to dead-lock when a coprocessor is used. For instance, a sequence as
CCMP

FCMP

13
Rev. E - March 1999

SPARC RT TEMIC

with waitstates during the Write stage of the CCMP shows the CCMP locked in this Write stage after deassertion
of the hold signal because FCCV has been wrongly deasserted. FCMP is then locked in its E stage by CCCV.

3.11.2 Work Around

Do not use coprocessor with waitstates and the TSC692E.

3.12 Data output tristate upon FLUSH rising edge

3.12.1 Problem description

Unlike the TSC691E, the TSC692E Data output are disabled asynchronously on FLUSH rising edge during any
Floating Point Store instruction if a TSC691E trap has occurred (external interrupts, internal error ...). This may
lead to the MEC detecting a parity error on the early tristated Data Bus and as3dENX@G, then setting the
TSCG691E into Error Mode!

The right behaviour for Data Bus tristate with FLUSH is described in TSC692E User's Manual in section "3.2.2.
Instruction Pipeline Flush".

3.12.2 Work Around
Do not use MEC parity checking with the TSC692E.

WARNING: The TSC692E never detects parity errors on data loaded!

3.13 Clock edge Data output enabling and disabling

3.13.1 Problem description

Data output are enabled and disabled on CLK rising edges instead of falling edges.
3.13.2 Work Around

No work around known.

3.14 Floating Point Operations FLUSH abortion

3.14.1 Problem description

Floating Point Operations are not aborted by FLUSH signal (due to asynchronous traps) during Write Stage of
FPU pipeline. In this case, they may keep on running inside the FPU core, potentially leading to malfunction when
they are restarted after the asynchronous trap handler is done. The different error manifestations are:

e wrong result without FPU exception,

« wrong %fsr without FPU exception,

e FPU exception,

14
Rev. E - March 1999

TEMIC

semicandounciars

SPARC RT

e FPU exception with wrong@afsr.

An incorrect reset of the FPU microcode ROM is performed in this case when the FLUSH signal is asserted and
an FPop is in the Write Stage of the FPU pipeline. This logic is left at an unknown state which depends on:

« the kind of instruction (23 different FPops),

» the operand data involved in the FPop,

« the number and the kind of instructions involved in the asynchronous trap routine.

3.14.2 Work Around

All the asynchronous trap routines must contain in the following order:
e a minimum of 85 instructions without FPop’s (if not, complete withp’s),
e save ET bit and force ET=1 (enable trap bit, bit 5%ps¥),
o first - fmovs %f0, %fD
* second -fmovs %f0, %fP
e restore ET bit,
e normal trap routine.

The FP exception trap handler must contain in its header:
» store double FPqueue instructiorstd %fq, [address]
e if Queue instruction fmovs %f0, %f0then do nothing and return from trap withdatovsre-execution,
« else (Queue instt fmovs %f0, %fQ)perform normal exception trap routine.

Main Program Main Program
Async. trap Async. trap
FPop ®*g—"| Save FPop *Jg—"| Save
min of min of
85 IU inst. 85 IU inst.
save ET & save ET &
force ET=1 force ET=1
fmovs fmovs FPU exception
fmovs fmovs e—p Save
Restore ET] restore ET j-a— check
FQ inst.
async. async.
trap handle trap handle "fmovs"
cont. cont.
® Restore ® Restore
FPU.
trap handle
Case without FPU exception Case with FPU exception e Restore

After the 85 IU instructions, the firdtnovs"repears"” the FPU. But, sometimes, it generates a pending FP exception
(in a standard behaviofmovsnever generates an FP exception). Because the ET bit has been set, the second
fmovswill take into account the FP exception, else it will act anap.

15
Rev. E - March 1999

SPARC RT TEMIC

Note 1: Once a trap is taken, traps are disabled (ET=06psr). On returning from a trap withett instruction,
traps are re-enabled (ET=1 #psh.

Note 2: When ET=0, asynchronous traps are ignored and synchronous traps force an error mode.

3.14.3 Example of failing code

This example uses the ERC32 chip set. The malfuction manifestation is a wrong result without FPU exception.

Main Program:
The initialization of the MEC Real Time Counter (rtcs=0x00, rtcc=0x17) exactly
generates a flush signal during the write stage of the of FPU pipeline. Don't
change the number of instructions between "enable RTC" and the "_fptest".
with fp_source = 0x 00000001
then wrong fp_result = Ox 0f800000 0f800000
instead of fp_result = 0x 3ff00000 00000000

!
!
!
!
!
!
I
I
! Carefull: In %psr, bitet must be set and fielgil < Ox11.
!

set 0x01f80000, %I3 I MEC add offset

set 0x0000, %I0

st %I0, [%I3 + 0x84] I load RTC scaler.
set 0x000c, %l0

Id [%10], %I0

st %I0, [%I3 + 0x80] I load RTC counter
set 0x0e00, %I0
st %I0, [%I3 + 0x98] I enable RTC (one shoot)
set 0x5ffe, %I0
st %I0, [%I3 + 0x4c] I unmask interrupt 13
set _fp_source, %I0
Id [%l10], %f0 ! load fp_source into %f0
nop; nop; nop; nop; nop
_fptest:
fitod %f0, %f2 | instruction to test

nop; Nop; nop; nNop; nop

set _fp_result, %I0
std %f2, [%I10] I store.dble %f2 into fp_result
nop; nop; nop; nop; nop

_end:

I RTC Trap Handler:
!

.align 16 b offset 0x1d0
_intld:

jmpl %I1, %g0

rett %I2

nop; nop
16

Rev. E - March 1999

TEMIC

semicandounciars

SPARC RT

I FPU Exception Trap Handler:
!

.align 16 b offset 0x080
_fexc:

sethi %hi(_fexctarget), %I0

jmp %I0 + %lo(_fexctarget)

nop; nop
_fexctarget:

set _ifsr, %I0

st %fsr, [%610]

set _ifq, %I0

std %fq, [%10]

jmpl %I1, %g0

rett %I2

nop; nop

I segment "data"”
|

.align 16
_ifg:

.word 0x00000000

.word 0x00000000
_fp_result:

.word 0x00000000

.word 0x00000000
_fp_source:

.word 0x00000001
_ifsr:

.word 0x00000000

3.15 FPU register addressing

3.15.1 Problem description
The problem occurs in the following sequence:

FPopl %rs1, %rs2, %rd

up to 80 IU instructions (depending on FPopl and data)
Iddf [], %rd

FPop2 %rs1, %rs2, %rd

with the following conditions:

condition 1: rs2 (FPop2) = rd (FPop1l)

condition 2: rd(FPopl) and rd(Iddf) with bit[2] = bit[4] (example fO and f2, f8 and
f10, ...)

In this case, the FPopl instruction will store the wrong data in the register File
due to the Iddf FP instruction.

17
Rev. E - March 1999

TEMIC

SPARC RT

3.15.2 Work Around

casel:

case3:

Source:
FPopl %rsl, %rs2, %rd
IU instructions
Iddf [], %rd
FPop2 %rs1, %rs2, %rd

If rd(Iddf) and rs2(FPop2) with bit[2] = bit[4] (rd[4:0], rs1[4:0], rs2[4:0])

Patch:
FPopl %rsl, %rs2, %rd
U instructions
Idf], %rd
Idf [], %rd+1
FPop2 %rsl, %rs2, %rd

FPopl = fmovs or fabss or fnegs
Source:
movs %rs2, %rd (or fabss %rs2, %rd or fnegs %rs2, %rd)
lddf [], %rd
FPop2 %rsl, %rs2, %rd

If conditions 1 and 2 are fulfilled:

Patch_1:
fmovs %rs2, %rd (or fabss %rs2, %rd or fnegs %rs2, %rd)
Idf [], %rd
Idf [], %rd+1
FPop2 %rsl, %rs2, %rd

or Patch2 (same number of cycles):
fmovs %rs2, %rd (or fabss %rs2, %rd or fnegs %rs2, %rd)
nop
Iddf [], %rd
FPop2 %rsl, %rs2, %rd

FPopl is NOT equal to fmovs or fabss or fnegs or fsubs
Source:
FPopl %rs1, %rs2, %rd (with FPopl is NOT equal to fabss or fnegs or fmovs
or fsubs)
lddf [], %rd
FPop2 %rsl, %rs2, %rd

Nothing to be patched

18

Rev. E - March 1999

K

TEMIC SPARC RT

Note: the replacement of Iddf by 2 Idf works for all cases.

3.15.3 Example of failing code

!
I initialization
!
init:

set datal,%l7

Id [%0l7],%fsr 1 %fsr=0x0f080000
ldd [%017+8],%f8 1 %f8=0xfffffffffffffff
ldd [%0l7+8],%f10 1 9%f1 O=Oxffffffffffffff
nop
example
Generalwork around:
replace: Idd [%0l7+24],%f10
by: Id [%617+24],%f10
Id [%17+28],%f11

I
I

I

|

|

!

I Work around for this example:

! between the following two intructions:
I

|

|

!

!

!

I

fnegs %f8,%f8
Idd [%l7+24],%f10
insert a nop:
fnegs %f8,%f8
nop
Idd [%]7+24],%f10
example:
Idd [%6l7+16],%f8 ! %f8=0x3febab5557101f8d
nop
nop
nop
fnegs %f8,%f8 ! %f8=0xbfebabh5557101f8d
ldd [%I7+24],%f10 I %f10=0x4000000000000000 expected
fsubd %f10,%f8,%f10 ! %f10=0x4006ead555c407e3 expected
nop
nop
nop
std %f8,[%l7+32] I %f8 checking value
nop
nop
nop
std %f10,[%I7+40] I %f10 checking value
nop
nop

19
Rev. E - March 1999

SPARC RT TEMIC

nop

end:

I segment "data"
|

.align 8

datal:

.word 0x0f080000 ! address=[%I7], %fsr init value

word Oxffffffff

word Oxffffffff I address=[%I7+8], %f8 and %f10 init value
.word Oxffffffff

.word 0x3febab55 | address=[%I|7+16], %f8 loading value
.word 0x57101f8d

.word 0x40000000 I address=[%I7+24], %f10 loading value
.word 0x00000000

word Oxffffffff I address=[%I7+32], %f8 checking value
.word Oxffffffff

.word Oxffffffff I address=[%I7+40], %f10 checking value (=0x0 if error)
.word Oxffffffff

4. Memory Control Unit TSC693E

4.1 TSC693E ERSR CPU halt indication in ERSR clearance at soft reset

4.1.1 Problem description

The 13:th bit (HLT) in the Error Reset and Status Register (ERSR) indicates if the IU/FPU are or have been halted.
If this bit is set and a soft reset is triggered, a TSC693E internal parity error will be detected.

In case of any of the following resets:

1. Watch Dog reset

2. Software reset

3. Error reset

the reset cause is written to the ERSR and the parity is re-calculated. The TSC693E detects a parity error in this
register and asserts TSC693E hardware Error. This parity error is only performed when the 13:th bit of the error

and reset status register is set.

This means that if the IU/FPU were halted (by asserting the external halt signal and then resume axecution by
deasserting the same signal), then the SW, WD and Error reset can't be performed (in the future) due to parity error.

4.1.2 Workaround

No Workaround known.

20
Rev. E - March 1999

TEMIC SPARC RT

4.2 UART status after UART clear

4.2.1 Problem description

Clearing the UARTSs by setting the associated bits in the UART status register, will assign some default (reset)
values to the Parity Enable, Even/Odd Parity and Stop Bits. These values are not the same values in the TSC693E
Control Register and the irrespective of that register.

The UARTSs enable the following when cleared:

1. Parity Enable

2. Odd parity

3. One Stop hit

It's not possible to continue programme execution after this action, unless the incoming data has the same
configuration.

4.2.2 Workaround

To work around the problem, re-programme the UART configuration bits in the TSC693E Control Register (bits
20:22) after each UART clear operation.

4.3 System Status Register update during Non-Correctable Error

4.3.1 Problem description

The System Fault Status Register doesn’t update the data fault type when an uncorrectable error is detected in the
memory.

The memory exception handling is correct. This problem has only been observed during read operations:

1. Read byte

2. Read halfword

3. Read word

4. Read double word

The expected data fault type in the system fault register is 0Ox103C, but the register always shows 0x78 the reset value.
4.3.2 Workaround

No Workaround known.

21
Rev. E - March 1999

SPARC RT TEMIC

4.4 Byte/halfword operations during Waitstates

4.4.1 Problem description

When programming the TSC693E Waitstate Configuration Register to RAM write = 0 WS and RAM read = 1,2,3
WS, Byte write operations will fail and Half word operations will fail.

This problem has been observed during IU operations:
1. stb (store hyte)
2. sth (store half word)

This problem has been observed during byte/half word write in RAM on the DEM32 board and on the TSC693E
VHDL model:

1. Write byte, 0 WS(write) and 1 WS(read)

2. Write byte, 0 WS(write) and 2 WS(read)

3. Write byte, 0 WS(write) and 3 WS(read)

4. Write hword, 0 WS(write) and 1 WS(read)

5. Write hword, 0 WS(write) and 2 WS(read)

6. Write hword, 0 WS(write) and 3 WS(read)

Where the TSC693E executes a read-modify-write operation.

Read 32-bit memory data, modify byte/half word, write 32-bit memory data.
The expected write strobe, MEMWR1*, is not generated by the TSC693E.
The expected write strobe, MEMWR2*, is generated correctly by the TSC693E.
Due to the missing write strobe data is not written.

EDAC check bits is written if MEMWR2* is used for check bits writing.
4.4.2 Workaround

No Workaround known.

4.5 Wrong DMA access error

4.5.1 Problem description

When a DMA access aborts an illegal store byte to a TSC693E register, the TSC693E register access violation
leads to a DMA access error: IRL is set to 8.

22
Rev. E - March 1999

TEMIC SPARC RT

semicandounciars

stb %g0,[%gl + 0xe0]
with [%g1 + 0xe0] addressing TSC693E UARTA register is aborted as shown on the following timing diagram.

The TSC693E did not record the context in which the register access violation occurred, that is an 1U access, and
propagated the error through the DMA access context, triggering a DMA access error.

4.5.2 Work Around

No Workaround known.

23
Rev. E - March 1999

TEMIC

SPARC RT

Qs

zany
[RCARIRTRR TN AT

00 13

20

OEL

Qe
T

LI

| 8EBY JEELE LRTL0 S AN UL SR
0G0

omaaE
N L AR IR AT AR TN

EHalMreqyay seguy
kA%

| BB E P

R TR

d o BwE e

L hl.mlb.h__.__.:

Loy PRy e e

o = ppE |dwi

F— s Ui one o

|

F— aidumwpy

[=ew COBBEWR QU

I EREBUR QU

— s ERWE Uy

[e 11T T

— cermRUp T

Eﬁ up Gy

EHE___T__. pBer

__EH:.__:.

Ly u gy

| U bR,

| uberBwpF

TOTHIINNT 4

T B

-4

Ly g1

T szE

sy

T Elm.n_.__:.

U RoEf

3]

S
r 3w
1 |9 Prougr

[

n..

|| 97y,
TRy T (]

E% qmEr

T T

— o

| P

[Uy

Ty

L

sy sjEEbea;

1

R O

24

Rev. E - March 1999

	SPARC Radiation Tolerant Processor Chip Set (CBA) Design Considerations List
	1. Introduction
	1.1 Scope
	1.2 Applicable documents

	2. Integer Unit TSC691E
	3. Floating-point unit TSC692E
	3.1 Store Double floating-point instruction
	3.1.1 Problem description
	3.1.2 Work Around
	3.1.3 Example of failing code

	3.2 Store Floating-point Status Register with waitstates
	3.2.1 Problem description
	3.2.2 Work Around
	3.2.3 Example of failing code

	3.3 Load and Load Double Floating-point instructions with waitstates
	3.3.1 Problem description
	3.3.2 Work Around
	3.3.3 Example of failing code

	3.4 Store and Store Double Floating-point instructions with waitstates
	3.4.1 Problem description
	3.4.2 Work Around
	3.4.3 Example of failing code

	3.5 Store Double Floating-point Queue instruction with waitstates
	3.5.1 Problem description
	3.5.2 Work Around
	3.5.3 Example of failing code

	3.6 Store Double Floating-point Queue instruction with disabled parity checking
	3.6.1 Problem description
	3.6.2 Work Around
	3.6.3 Example of failing code

	3.7 Floating-point instruction sequence with one waitstate
	3.7.1 Problem description
	3.7.2 Work Around
	3.7.3 Example of failing code

	3.8 Floating-point Compare - Floating-point instruction sequence with waitstates
	3.8.1 Problem description
	3.8.2 Work Around
	3.8.3 Example of failing code

	3.9 FNULL signals assertion with waitstates
	3.9.1 Problem description
	3.9.2 Work Around

	3.10 FHOLD signal dead-lock with coprocessor
	3.10.1 Problem description
	3.10.2 Work Around

	3.11 FCCV signal dead-lock with waitstates and coprocessor
	3.11.1 Problem description
	3.11.2 Work Around

	3.12 Data output tristate upon FLUSH rising edge
	3.12.1 Problem description
	3.12.2 Work Around

	3.13 Clock edge Data output enabling and disabling
	3.13.1 Problem description
	3.13.2 Work Around

	3.14 Floating Point Operations FLUSH abortion
	3.14.1 Problem description
	3.14.2 Work Around
	3.14.3 Example of failing code

	3.15 FPU register addressing
	3.15.1 Problem description
	3.15.2 Work Around
	3.15.3 Example of failing code

	4. Memory Control Unit TSC693E
	4.1 TSC693E ERSR CPU halt indication in ERSR clearance at soft reset
	4.1.1 Problem description
	4.1.2 Workaround

	4.2 UART status after UART clear
	4.2.1 Problem description
	4.2.2 Workaround

	4.3 System Status Register update during Non-Correctable Error
	4.3.1 Problem description
	4.3.2 Workaround

	4.4 Byte/halfword operations during Waitstates
	4.4.1 Problem description
	4.4.2 Workaround

	4.5 Wrong DMA access error
	4.5.1 Problem description
	4.5.2 Work Around

