
TSC692E
Floating Point Unit

User’s Manual

for Embedded Real time 32–bit Computer

(ERC32)

for SPACE Applications

TSC692E

toc1Rev. H (02 Dec.96)

1. Introduction 1.
1.1. Scope 1.

2. TSC692E Overview 1.
2.1. SPARC RISC Standard Functions: 1.
2.2. Fault Tolerant and Test MECHANISM Improvements: 1.
2.3. Presentation of the ERC32 2.

Concept 2.
Functional Description 2.

3. Standard TSC692E Functions 3.
3.1. TSC692E Functional Description 4.
3.2. Floating–Point/Integer Unit Interface 6.

3.2.1. TSC692E RT Instruction Fetch and Execution 7.
3.2.1.1. Instruction Fetch 8.
3.2.1.2. Instruction Execution 9.

3.2.1.2.1. Floating–Point Compare Execution 11.
3.2.1.2.2. FPop Queuing 11.

3.2.2. Instruction Pipeline Flush 11.
3.2.2.1. Hold Signals 13.
3.2.2.2. Interlocking with FHOLD 13.
3.2.2.3. FNULL Signal 14.

3.3. TSC692E Programming Model 14.
3.3.1. TSC692E Registers 14.

3.3.1.1. f Registers 14.
3.3.1.2. FP Queue 15.
3.3.1.3. Floating–Point Status Register (FSR) 16.

3.3.2. TSC692E Floating–Point Instructions 18.
3.3.3. TSC692E Internal Operation 20.

3.3.3.1. Exception Handling 20.
3.3.4. TSC692E IEEE–754 Compliance 22.

3.3.4.1. IEEE Definitions 22.
3.3.4.2. IEEE Floating–point Data Formats 23.

3.3.4.2.1. Single–Precision Floating–Point 23.
3.3.4.2.2. Double–Precision Floating–Point 24.

3.3.5. NaN Format 24.
3.3.6. TSC692E Exception Cases 25.

3.4. TSC692E Signal Descriptions 26.
3.4.1. Integer Unit Interface Signals 26.
3.4.2. Coprocessor Interface Signals 27.
3.4.3. System/Memory Interface Signals 27.
3.4.4. TAP signals 29.
3.4.5. Power and Clock Signals 29.

4. Fault Tolerant and Test MECHANISM. 30.
4.1. Fault Tolerant and Test Support Signals 30.

Table of Contents

TSC692E

toc2 Rev. H (02 Dec.96)

4.1.1. Parity Checking 30.
4.1.2. Master/Checker Mode 31.
4.1.3. Test Access Port 31.
4.1.4. Miscellaneous 31.

4.2.Parity Checking 31.
4.2.1. Introduction 31.
4.2.2. Error handling scheme in TSC692E 31.
4.2.3. Parity Checking on Control Pads for the FPU 32.

4.2.3.1. Input control signals 32.
4.2.3.1.1. Output control signals 32.

4.2.4. Parity Checking on address bus 32.
4.2.5. Parity Checking on data bus 32.
4.2.6. Internal Parity Checking 32.
4.2.7.Non RT 602 Mode 32.

4.3. Master/checker Operation 34.
4.3.1. Basic function 35.
4.3.2. Master/Checker signals 35.

4.4. IEEE Standard Test Access Port & Boundary-Scan Architecture 36.
4.4.1. TAP signals 36.
4.4.2. TAP Controller 36.
4.4.3. The Instruction Register 36.

4.4.3.1. Design and Construction of the instruction register 37.
4.4.3.2. BYPASS Instruction 37.
4.4.3.3. EXTEST Instruction 37.
4.4.3.4. INTEST Instruction 37.
4.4.3.5. SAMPLE/PRELOAD Instruction 37.

4.4.4. The Device Identification Register 38.
4.4.5. Internal Scan Path 38.

4.5. Boundary scan test register 38.
4.6. Parity on odd and even bits of the register file bits 38.

5. Electrical and Mechanical Specifications. 39.
5.1. TSC692E Maximum Ratings and DC Characteristics 39.

5.1.1. TSC692E Maximum Rating 39.
5.1.2. TSC692E Operating Range 39.
5.1.3. TSC692E DC Characteristics Over the Operating Range 39.
5.1.4. TSC692E AC Test Loads and Waveforms 40.

5.2. TSC692E AC Characteristics 40.
5.2.1. TSC692E AC Waveforms 43.

5.3. TSC692E Package Descriptions 50.
5.3.1. 160-Pin MQFP-L Package 50.
5.3.2. 160-Pin MQFP-L Pin Assignment 51.

TSC692E

tab.1Rev. H – 02 Dec.96

Table 1. Load instruction execution 8.

Table 2. Store instruction execution 8.

Table 3. FPop execution 8.

Table 4. FHOLD Resource/Operand Dependency Cases 14.

Table 5. Floating–Point Status Register Summary 17.

Table 6. Floating–Point Load and Store Instruction Cycle Count 19.

Table 7. Floating–Point Operate (FPops) Instruction Cycle Count 20.

Table 8. Untrapped FP result in same format as operand 24.

Table 9. Untrapped FP result in different format 24.

Table 10. FCC[1:0] Condition Codes 26.

Table 11. priority within traps 32.

Table 12. Instruction Register Encoding 37.

Table 13. TSC692E Operating Range 39.

Table 14. TSC692E DC Characteristics over the operating range 39.

Table 15. TSC692E Capacitance Ratings [1] 39.

Table 16. TSC692E Characteristics at 14/25 MHz 40.

List of Tables

TSC692E

fig.1Rev. H – 02 Dec.96

ERC32 Architecture 3.

Figure 1. TSC692E Functional Block Diagram 5.

Figure 2. TSC692E Block Diagram (without parity checking) 6.

Figure 3. TSC692E Hardware Interface 7.

Figure 4. Instruction Fetch (Cache Hit) 9.

Figure 5. Floating–Point Instruction Dispatching 10.

Figure 6. Floating–Point Compare (FCMP) Execution 10.

Figure 7. Floating–Point Instruction Pipeline During A Trap 11.

Figure 8. Effect of FLUSH on LDF Instruction 12.

Figure 9. Effect of FLUSH on STF Instruction 12.

Figure 10. Effect of FLUSH on FPop Instruction 12.

Figure 11. Effect of FLUSH on FCMP Instruction 13.

Figure 12. f Register Organization 15.

Figure 13. f Register Addressing 15.

Figure 14. Floating–Point Status Register 16.

Figure 15. FPU Operation Modes 21.

Figure 16. Floating–Point Exception Handshake 22.

Figure 17. Single–Precision Floating–Point Format 23.

Figure 18. Double–Precision Floating–Point Format 23.

Figure 19. Parity Checking on Fractional Datapath 33.

Figure 20. Parity Checking on Exponent Datapath 34.

Figure 21. Master/Checker configuration 35.

Figure 22. Instruction Register Cell 37.

Figure 23. Boundary Scan Cell 38.

Figure 24. TSC692E AC Test Loads and Waveforms 40.
Figure 25. Floating–Point FHOLD Assertion 43.
Figure 26. Clock and RESET Timing 43.

Figure 27. Floating–Point Load Operation 44.

Figure 28. Floating–Point Store Operation 44.

Figure 29. Effect of FLUSH on Store Timing 45.

Figure 30. Floating–Point Load Cache Miss 45.
Figure 31. Floating–Point Store Cache Miss 46.

Figure 32. Floating–Point Compare 46.

Figure 33. Floating–Point Trap 47.

Figure 34. TAP Signals 47.

Figure 35. HWERROR Timing 48.

Figure 36. PARITY Signals 48.

Figure 37. MASTER/CHECKER Signals 49.

Figure 38. HALT Signal 49.

List of Figures

TSC692E

1Rev. H – 02 Dec. 96

1. Introduction

1.1. Scope

This document presents a preliminary datasheet of the TSC692E RT Floating Point Unit device specification. It is
organized in three chapters:
� Standard FPU (TSC692E) Functions (Chapter 3)

� Fault MECHANISM and Test MECHANISM (Chapter 4)

� Electrical and Mechanical Specification (Chapter 5)

Chapter 3 presents standard functions including some adaptations due to the introduction of fault tolerance
MECHANISM. Without losing the full binary compatibility with the entire SPARC V7.0 application software base.

Chapter 4 and 5 deal with the new added functions introduced in the TSC692E to improve the reliability of space
applications. These new functions do not impact the SPARC V7.0 compatibility.

2. TSC692E Overview

2.1. SPARC RISC Standard Functions:

� Full compatibility with Standard ANSI/IEEE 754-1985 for binary Floating Point Arithmetic

� 64-bit Internal Datapath

� Based on Floating-Point Unit from SUN

� Tightly coupled Integer-Unit interface

2.2. Fault Tolerant and Test MECHANISM Improvements:

� Parity checking on 98% of the total number of latches with hardware error traps

� Parity checking of address, data pads and IU/FPU control pads

� Master/Checker operation

� IEEE Standard Test Access Port & Boundary-Scan Architecture

� Possibility to disable the bus parity checking

� Manufactured using Atmel Wireless & Microcontrollers Space hardened 0.8 µm SCMOS-RT technology

� Part of the ERC32 high performance 32-bit computing core

To support applications requiring an extremely high level of reliability, the following improvements were introduced
in the standard SPARC RISC FPU TSC692E:
� Several independent fault detection MECHANISMs to support the design of fault tolerant system

like parity checking and master/checker operations.

� Support of sophisticated PC board level tests applicating the IEEE Standard Test Access Port and Boundary
Scan Architecture.

� Hardening of the process by construction, using restricted full static CMOS design rules for all critical blocks of
the circuit such as register file, ROMs, BUSSES etc...

TSC692E Floating Point Unit

TSC692E

2 Rev. H – 02 Dec. 96

� Hardened device processing using the 0.8 µm SCMOS-RT TECHNOLOGY.

Thanks to careful handling of the improvements, the introduced modifications have neither reduced the performance
of the device nor changed the full binary compatibility with the entire SPARC V7.0 application software.
Improvements in FPU design have decreased the power consumption.

2.3. Presentation of the ERC32

The TSC692E Floating Point Unit is, with the TSC691E Integer Unit and the TSC693E (Memory Controller), a part
of the ERC32 Computing Core.

Concept

The objective of the ERC32 is to provide a high performance 32-bit computing core, with which computers for
on-board embedded real-time applications can be built. The core will be characterized by low circuit complexity and
power consumption. Extensive concurrent error detection and support for fault tolerance and reconfiguration will also
be emphasized.

In addition to the main objective the ERC32 core will be possible to use for performance demanding research
applications in deep space probes. The radiation tolerance and error masking are therefore important. For the real-time
applications the system might be fail-operational rather than fail-safe. By including support for reconfiguration of the
error-handling the different demands from the applications can be optimized for the best purpose in each case.

The ERC32 will be used as a building block only requiring memory and application specific peripherals to be added
to form a complete on-board computer. All other system support functions will be provided by the core.

Functional Description

The ERC32 will incorporate the followings functions:
� Processor, which consists of one integer unit and one floating point unit. The processor includes concurrent error

 detection facilities.
� Memory controller (TSC693E), which is a unit consisting of all necessary support functions such as memory

control and protection, EDAC, wait state generator, timers, interrupt handler, watch dog, UARTs and test and
debug support. The unit also includes concurrent error detection facilities.

� Oscillator (optional).
� Buffers necessary to interface with memory and peripherals.

Next figure schematically shows the ERC32 architecture and external functions added to form a complete system.

TSC692E

3Rev. H – 02 Dec. 96

Floating

Point Unit

Integer
Unit

Memory
Controller

I/O Port

Memory Port

Address Port

DMA Port

DATA

Address

Chip Select

WE

QE

I/O Select

I/O R/W

I/O Ready

IRQ
IRQ Ack

EDAC checkbits

TSC692E

TSC691E

TSC693E

ERC32 Architecture

3. Standard TSC692E Functions

The TSC692E Floating–Point Unit (FPU) is a high–performance, single–chip implementation of the SPARC reference
floating–point unit. The TSC692E FPU is designed to provide execution of single and double–precision floating–point
instructions concurrently with execution of integer instructions by the TSC691E Integer Unit (IU). The TSC692E is
compliant to the ANSI/IEEE-754 (1985) floating–point standard.

The TSC692E provides a 64–bit Fractional/Exponent/Sign internal datapath for efficient execution of
double–precision floating–point instructions. All implemented instructions are executed within hardware. For efficient
data management, the TSC692E provides thirty–two 32–bit floating–point registers. These 32–bit registers can be
concatenated for use as 64–bit registers for double–precision operations. The internal 64–bit architecture of the
TSC692E allows high speed execution of both single– and double–precision operations.

The SPARC floating–point/integer unit interface supports concurrent execution of integer and floating–point
instructions. The tightly coupled floating–point/integer unit interface requires the integer unit to provide all addressing
and control signals for memory access. All instructions are fetched by the integer unit, and these instructions are
simultaneously latched and decoded by both the TSC691E and TSC692E. Execution of a floating–point instruction
is enabled by TSC691E, which signals the TSC692E to begin execution of the floating–point instruction when that
instruction reaches the execute stage of the TSC691E instruction pipeline. In the case of a floating–point load or store
instruction, the TSC691E executes the FP load or store in conjunction with the TSC692E by asserting address and
control signals for memory access while the TSC692E loads or stores the data. All other floating–point instructions
execute independently of the integer unit and in parallel with integer instruction execution.

TSC692E

4 Rev. H – 02 Dec. 96

The floating–point/integer unit interface provides hardware interlocking to ensure synchronization between the
TSC691E and TSC692E. Hardware interlocking ensures software compatibility among SPARC systems with different
levels of floating–point performance.

3.1. TSC692E Functional Description

Figure 1. illustrates the functional block diagram for the TSC692E. The fetch unit captures instructions and their
addresses from the D[31:0] and A[31:0] busses. The decode unit contains logic to decode the floating–point instruction
opcodes. The execution unit handles all instruction execution. The execution unit includes a floating–point queue (FP
queue), which contains stored floating–point operate (FPop) instructions (see Section 3.3.2) under execution and their
addresses. The execution unit controls the load unit, the store unit, and the datapath unit.

The load unit holds data that is fetched from memory via the data bus before it is written into the register file. The
register file contains the 32 f registers. The exceptions/floating–point status register (FSR) unit keeps the status of
completing FPops, as well as the operating mode of the TSC692E. The store unit holds data that is supplied to the data
bus during a store operation. The dependency checking unit checks for conditions where the FPU must freeze the
TSC691E integer unit pipeline so that an incoming instruction does not overflow the floating–point queue. The
datapath unit contains arithmetic logic used by FPops to operate on the data in the register file and is comprised of a
Fractional, Exponent and Sign units. Figure 2. gives a more detailed block diagram of the TSC692E.

The TSC692E provides three types of registers: f registers, FSR, and the FP queue. The f registers are the thirty–two
floating–point operand registers, each 32–bits in size. Adjacent even–odd f register pairs (for instance, f0 and f1 can
be concatenated to support double–precision operands). The FSR is a 32–bit status and control register. It keeps track
of rounding modes, floating–point trap types, queue status, condition codes, and various IEEE exception information.
The floating–point queue contains the floating–point instruction currently under execution, along with its
corresponding address. The floating–point queue provides an efficient method of handling floating–point exceptions.
When an FPop instruction causes a floating–point exception, the queue contains the offending instruction/address pair
along. The TSC691E integer unit acknowledges the floating–point exception, enters a floating–point trap routine,
empties the queue, and corrects the exception case. After the exception case is corrected, unfinished floating–point
instruction found in the floating–point queue is either executed or emulated in the trap handler before returning to
normal execution.

The TSC692E depends upon the TSC691E to assert all addresses and control signals for memory access. Floating–point
loads and stores are executed in conjunction with the TSC691E, which provides addresses and control signals while
the TSC692E supplies or stores the data. Instruction fetch for integer and floating–point instructions is provided by
the TSC691E. When the TSC691E integer unit asserts an address for an instruction fetch, it asserts the INST signal
one clock later. The TSC692E floating–point unit uses INST to determine when a valid instruction is present on the
D[31:0] bus. The instruction, which appears on the data bus on the next clock cycle, is latched and paired with its
corresponding address. In any given cycle, one instruction/address pair is stored by the TSC692E, regardless of whether
the instruction is an integer or floating–point instruction. This instruction/address pair may be selected for execution
by the TSC691E upon asserting the FINS1 or FINS2 signal. The FINS1 or FINS2 signals enables a floating–point
instruction to begin execution by the TSC692E.

Upon decoding a floating–point instruction, the TSC691E will assert the FINS1 or the FINS2 signal to enable the
TSC692E to begin execution. The FINS1 or FINS2 signal is asserted during the decode stage of the floating–point
instruction, and is recognized by the TSC692E at the beginning of the execute stage of the floating–point instruction.
This ensures synchronization of the decode and execute stages of a floating–point instruction between instruction
pipelines of the TSC691E and the TSC692E.

TSC692E

5Rev. H – 02 Dec. 96

D
ep

en
de

nc
y

ch
ec

ki
ng

 (
F

H
O

L
D

)

Store Unit

Floating Point
Datapath Unit

Exceptions/
FSR Unit

Fetch Unit

Execution Unit/
Floating Point
 Queue

Decode Unit

ADDRESS BUS DATA BUS

Inst
Load Unit

Fnull

Flush
Fins1/2

DOE

FCC[1:0]

FXACK

DATA BUS

Register File
32 X 32 bits

FCCV

(*)

(*)

Hold

Holds refers to the MHOLDA
MHOLDB, and BHOLD inputs

FEXC

MDS

Holds

Holds

RESET

Figure 1. TSC692E Functional Block Diagram

TSC692E

6 Rev. H – 02 Dec. 96

SL1 SL2

Register B

Shift
Left Right

Shift

Adder

Register T

Constant

Register C

SL2

XY

SR1

«1»

y x

4-level Carry-Save Adder

Init Carry
Carry Sum

8 Bits/Cycle

Multiplier

Operand BOperand A Frac-Result Exp-Result

SL1

Register A Register B

Adder

Constant

XY

y x

«0»

Normalizer

Exponent Datapath

Fractional Datapath Sign Datapath

ROM (256 X 64)/
 Control

Register A

«0»

SR1

Register File

2 X 16 X 34 (2 parity bits)

0

Figure 2. TSC692E Block Diagram (without parity checking)

3.2. Floating–Point/Integer Unit Interface

The TSC692E is designed to directly interface with the TSC691E without external glue logic. Figure 3. illustrates the
signals required to interconnect the TSC691E and TSC692E. The control signals illustrated in Figure 3. are used to
interface with the remainder of the CPU system components. The FNULL, RESET, BHOLD, MHOLDA or MHOLDB,

TSC692E

7Rev. H – 02 Dec. 96

MDS, and DOE signals are used by the a Cache Controller(CC) and Memory Management Unit (MMU) for cache
interface and virtual bus arbitration. The signal descriptions for the TSC692E signals are described in Section 3.4.

R
E

SE
T

M
H

O
L

D
A

M
H

O
L

D
B

M
D

S

B
H

O
L

D

D
O

E

FN
U

L
L

D
[3

1:
0]

D
[3

1:
0]

A
[3

1:
0]

A
[3

1:
0]

ADDRESS BUS

DATA BUS

CONTROL SIGNALS

INST
FINS1
FINS2

FLUSH
FXACK

FP
FCC[1:0]

FCCV
FHOLD
FEXC

TSC692E
Floating Point Unit

TSC691E
Integer Unit

Figure 3. TSC692E Hardware Interface

3.2.1. TSC692E RT Instruction Fetch and Execution

The TSC692E uses a four–stage instruction pipeline consisting of fetch, decode, execute, and write stages (F, D, E,
and W). The instruction pipelines for the TSC691E and the TSC692E are concurrent and synchronized; a
floating–point instruction will be in the same stage in both processors. Multiple cycle instructions such as
floating–point operate instructions (FPops) leave the pipeline after the W stage and enter the FP queue until completion.

Addresses for both integer unit and floating–point unit instructions are supplied by the TSC691E. The TSC692E FPU
latches all instructions and the corresponding addresses from the D[31:0] and A[31:0] busses. The TSC692E uses the
INST signal, supplied by the TSC691E, to identify an instruction fetch by the integer unit.

Decode of the latched instruction occurs on the next clock cycle, with both the IU and the FPU decoding the instruction
simultaneously. During the decode stage of the floating–point instruction, the FPU checks for operand and resource
dependencies. When the TSC691E integer unit decodes a FPop, it asserts the FINS1 or FINS2 signal. This occurs before
the end of the decode stage, and is used by the TSC692E to initiate the execution of a floating–point instruction. If the
TSC692E has detected an operand or resource dependency during the decode stage, the FPU will assert FHOLD as
the instruction begins the execution stage. This freezes the integer unit’s pipeline until the FPU can resolve the
dependency.

If no resource or operand dependencies exist, the decoded floating–point instruction begins execution. Instructions
entering execution are stored in the FP queue, where they are held until execution is completed. Note that if the FP

TSC692E

8 Rev. H – 02 Dec. 96

queue is full during an instruction’s decode stage, the TSC692E asserts FHOLD as the instruction enters the execution
stage in order to halt the TSC691E. FHOLD is released when space becomes available in the FP queue.

The following tables describe the execution phases of TSC692E instructions. Additional cycles beyond the F, D, E,
and W stages are denoted as Wh (Write hold). Wh stages are equivalent to the additional cycles held by IOPs in the
TSC691E.

Table 1. Load instruction execution

Cycle Action

D stage Decode instruction, check operand dependencies

E stage FHOLD if necessary

W stage Capture data from D[31:0] bus (LDF, LDFSR), capture MSW from D[31:0] bus (LDDF).

Wh1 stage Write data into FP registers or FSR register (LDF, LDFSR), capture LSW from D[31:0] bus (LDDF)

Wh2 stage Write data into register (LDDF)

Table 2. Store instruction execution

Cycle Action

D stage Decode instruction, check operand dependencies

E stage FHOLD if necessary, read data from FSR register or FP queue

W stage (mid–cycle) Drive data onto D[31:0] bus (STF, STFSR), drive MSW or FP queue address onto D[31:0] bus (STDF, STDFQ)

Wh1 stage
(mid–cycle)

Stop driving D[31:0] bus (STF, STFSR), drive LSW or FP queue opcode onto D[31:0] bus (STDF, STDFQ)

Wh2 stage
(mid–cycle)

Stop driving D[31:0] bus

Table 3. FPop execution

Cycle Action

D stage Decode FPop, check resource and operand dependencies

E stage FHOLD if necessary, read operand(s) from register file

W stage Read any additional operands from register file; start computing results

FP Queue Compute, FPop in queue

FP Queue Check exception status

FP Queue Update FSR, write results or signal FP exception trap if necessary

3.2.1.1. Instruction Fetch

As the TSC691E fetches an instruction, the TSC692E captures it at the same time from the D[31:0] bus. The address
corresponding to this instruction is captured from the A[31:0] in the previous cycle. The INST signal is used to
determine when a valid instruction is present on the D[31:0] bus, and when a valid address has been fetched from the
A[31:0] bus in the previous cycle. Figure 4. illustrates an example of an instruction fetch with a cache hit. The
transactions on the address and data busses show two instruction fetches followed by a data fetch.

TSC692E

9Rev. H – 02 Dec. 96

Inst1 Inst2 Data Inst3

A1 A2 Data A A3

CLK

INST

D[31:0]

A[31:0]

Figure 3. Instruction Fetch (Cache Hit)

A1 A2A[31:0]

D[31:0]

INST

MHOLD

MDS

CLK

Inst1 Inst2 Data

Data AData A

Figure 4. Instruction Fetch (Cache Miss on A2)

In the case of an instruction cache miss, a memory hold signal (MHOLDA, MHOLDB, or BHOLD) is driven low by
the cache system starting in the cycle following the instruction fetch. The instruction which was captured from the
D[31:0] bus is invalid and is replaced when the system returns a valid instruction on the D[31:0] bus. The hold signal
lasts for several cycles during which time the MDS signal is asserted by the cache system, notifying the TSC692E that
the valid instruction is available on the D[31:0] bus. MDS is also used when there is a cache miss on data (via load
instructions) so the instruction is reloaded only if INST was asserted in the previous non–hold cycle. The same sequence
of transactions in Figure 4. are used in Figure 5. , except that the second instruction fetch (Inst 2) experiences a cache
miss.

3.2.1.2. Instruction Execution

The FINS1 and FINS2 signals notify the TSC692E when to launch a floating–point instruction. When FINS1/FINS2
is received, the floating–point instruction is in the D stage of the TSC691E integer unit pipeline. The example in
Figure 6. shows a situation where both FINS1 and FINS2 are used. A load instruction is followed by two FPops. The
first FPop is fetched while the load instruction is executing. Because the load takes more than one cycle to execute,
the starting of the FPop is deferred, and thus the instruction is held in the instruction buffer of the TSC692E. When
the TSC691E reaches the D stage of the first FPop (Inst 2), it issues FINS2 to start the FPop. When the D stage of the
second FPop (Inst 3) is reached, FINS1 is issued to start the second FPop.

TSC692E

10 Rev. H – 02 Dec. 96

FINS1 and FINS2 are never asserted in the same cycle. Both FINS1 and FINS2 are ignored in the following conditions:

1 - FLUSH is asserted.

2 - MHOLDA, MHOLDB, BHOLD,CHOLD, or FHOLD is asserted.

3 - FCCV or CCCV is deasserted.

Fins1 starts Inst3Fins2 starts Inst2FPopsLoad (IU)

Inst1 Inst2 Inst3 Ld Data

FINS1

FINS2

D[31:0]

CLK

WRITE

EXECUTE

DECODE

FETCH Inst 1 Inst 2

Inst1

Inst3

Inst1

Inst 1 (hold)

Data

Inst 2

Inst 1 (hold)

Inst 1

Inst 3

Inst 2

Inst 1 (hold)

Inst 3

Inst 2 Inst 3

Figure 5. Floating–Point Instruction Dispatching

VALID

Fins signal corresponding to FCMP instruction

Next

FCMP

FCMP

FCMP

Instr

Next
Instr

Next
Instr

Next
Instr

Next
Instr

Next
Instr

Next
Instr

FINS1/2

FCCV

FCC[1:0]

CLK

WRITE

EXECUTE

DECODE

FETCH

Figure 6. Floating–Point Compare (FCMP) Execution

TSC692E

11Rev. H – 02 Dec. 96

3.2.1.2.1. Floating–Point Compare Execution

Floating–point compare instructions cause the instruction pipeline to be frozen by the use of FCCV, starting from the
E stage of the instruction following the compare instruction until the FCC condition codes become valid. FCCV is
deasserted, causing the TSC691E to HALT execution until FCCV is asserted. Figure 7. illustrates the timing of FCCV
relative to the FCMP instruction and the FCC condition codes.

FCCV is deasserted in the W stage of the FCMP instruction. The instruction that immediately follows the FCMP is
held in its E stage until FCCV is reasserted. FCC[1:0] is valid one cycle before FCCV is reasserted. For unimplemented
compare instructions, the TSC692E freezes the instruction pipeline and causes an unimplemented FPop trap, which
the TSC691E takes immediately.

3.2.1.2.2. FPop Queuing

When a FPop has passed the first cycle of the W stage and FLUSH has not been asserted, the FPop enters the FP queue.
Note that the W stage of an FPop may be extended to more than one cycle if a hold condition exists. As an FPop
completes execution successfully and results are written to the register file, it is removed from the FP queue.

3.2.2. Instruction Pipeline Flush

When a trap or interrupt occurs in the integer unit, normal program execution is HALTed and control is transferred to
the trap handler. The instruction in the E stage of the pipeline and any instructions fetched after it are aborted and must
be restarted after the trap handler is done (or emulated in the trap handler). Instructions that have not yet been
transferred to the FP queue are aborted by the TSC692E when the trap occurs. The TSC691E asserts the FLUSH signal
in the W stage of the instruction to be aborted (refer to Figure 8.). FPop which was issued before this instruction
continues execution (and is in the queue) while instructions issued after it are aborted.

The following figures illustrate how each type of floating–point instruction is affected by the FLUSH signal. Figure 9.
illustrates the effect of the FLUSH signal during a load floating–point instruction (LDF). A FLUSH signal asserted
anytime on or before the last Wh stage of a load instruction causes the load to abort, leaving the contents of the
floating–point register file unchanged.

Figure 10. illustrates the effect of FLUSH on a store floating–point instruction (STF). A FLUSH signal asserted on
or before the last Wh stage of a store instruction causes the store to abort and the TSC692E to stop driving the D[31:0]
bus by the middle of the next clock cycle.

Figure 11. illustrates the effect of FLUSH on a FPop instruction. A FLUSH signal asserted anytime on or before the
W stage of a FPop instruction causes the FPop to abort, leaving the contents of the register file and the FSR unchanged
by that instruction. FPop that has passed the W stage but is still executing (stored in the FP queue) is not affected.

Figure 12. illustrates the effect of FLUSH on a floating–point compare. FLUSH asserted in the W stage of a FCMP
instruction causes the FCMP to abort, leaving the FSR unchanged by that instruction. FCCV is reasserted in the next
clock cycle.

FLUSH

CLK

WRITE

EXECUTE

DECODE

FETCH Inst 2

Inst2

Inst2

Inst2

Inst 3

Inst 1

Inst 4

Inst 3

Inst 3

Inst 3

Inst 4

Inst 4
Trap recognized Aborted

Aborted

Inst 1

Inst 1

Figure 7. Floating–Point Instruction Pipeline During A Trap

TSC692E

12 Rev. H – 02 Dec. 96

Assertion of FLUSH during this period aborts LDF instruction

FINS1/2

CLK

D[31:0]

D E W Wh

Data

Figure 8. Effect of FLUSH on LDF Instruction

FINS1/2

D E W Wh1 Wh2

CLK

D[31:0] Store data

Assertion of FLUSH during this period aborts STF instruction

Figure 9. Effect of FLUSH on STF Instruction

D[31:0]

CLK

FINS1/2

D E W

Assertion of FLUSH during this period aborts FPop instruction

Figure 10. Effect of FLUSH on FPop Instruction

TSC692E

13Rev. H – 02 Dec. 96

FINS signal corresponding
to FCMP instruction

DECODE

EXECUTE

WRITE

CLK

FINS1/2

FCCV

FLUSH

NEXT INSTR

NEXT INSTR

NEXT INSTR NEXT INSTR

NEXT INSTR
(Aborted)

FCMP

FCMP

FCMP

FETCH

(held)

Figure 11. Effect of FLUSH on FCMP Instruction

3.2.2.1. Hold Signals

If MHOLDA, MHOLDB, BHOLD, CHOLD, or FHOLD is active, or FCCV or CCCV is inactive, the instruction
pipelines of the TSC691E and TSC692E are frozen. FHOLD and FCCV are generated by the TSC692E, CHOLD and
CCCV are generated by the coprocessor, and the others are generated by the system.

In the TSC692E, “freezing” or “holding” the instruction pipeline means that instructions that are still being tracked
by the TSC691E are not allowed to continue executing. The instructions are allowed to continue execution when all
of the hold signals are inactive and all of the condition code valid signals are active. Holds affect all load/store
instructions, and only FPops which are in the F, D, E and W stages of the instruction pipeline. Hold signals do not affect
the execution of a FPop in the FP queue.

3.2.2.2. Interlocking with FHOLD

In some situations it is necessary to stop the TSC691E pipeline, either because a FP load/store instruction must be
suspended due to an operand dependency, or because the TSC692E cannot accept any more instructions due to a
resource dependency. FHOLD is used to freeze the instruction pipeline in these cases. Table 4. describes mandatory
conditions under which FHOLD is asserted.

Operand dependencies listed in Table 4. apply to all FPops that are defined in the architecture. For example, suppose
an unimplemented FPop is in the FP queue, waiting to cause an exception. If a store instruction is issued to the TSC692E
to store the contents of the unimplemented FPop’s destination register, the store instruction must cause a FHOLD so
that the wrong data is not stored. The unimplemented FPop eventually causes a trap that is taken by the TSC691E in
the E stage of the store instruction.

The following simplification could be applied when handling all unimplemented FPops: when an unimplemented FPop
has been issued to the TSC692E but has not yet caused a trap, assert FHOLD on the next floating–point instruction
issued until FEXC is asserted. There is no loss in performance because any FPops entering the FP queue after the
unimplemented FPop would be re–executed after the unimplemented FPop has been taken care of in the trap handler.

TSC692E

14 Rev. H – 02 Dec. 96

Table 4. FHOLD Resource/Operand Dependency Cases

Resource Dependencies:

If the TSC692E will not have FP queue entry available to accommodate additional FPops, the TSC692E asserts FHOLD to stop the TSC691E from
issuing any more instructions to the TSC692E.

Operand Dependencies:

LDF,
LDDF

Load data from
memory to f register

Load instructions must not overwrite the source or destination registers of any FPop that has not
completed execution. In other words, the rd. field of the load instruction must not refer to the same f
register as any valid rs1, rs2 or rd field of an outstanding FPop. The source registers of FPops (rs1, rs2)
may not be altered because an FP exception trap would require that the source registers be unaltered for
the trap handler.

STF,
STDF

Store data from f
register to memory

If a store instruction accesses an f register that is the destination register of an FPop that has not yet
finished execution, the store instruction waits until all outstanding FPops with that register as a
destination are complete.

LDFSR,
STFSR

Load/store data
between memory and
floating–point status
register

If any instructions are currently executing in the TSC692E when a LDFSR/STFSR instruction is issued
by the TSC691E, the TSC692E holds until all instructions have completed execution and are no longer in
the FP queue.
If a LDFSR instruction is currently executing in the TSC692E when an FPop or STFSR is issued by the
TSC691E, the TSC692E holds until LDFSR instruction has completed execution..

STDFQ Store FP queue while
qne=1 and in
execution mode

If a STDFQ is issued by the TSC691E when the Floating-Point Queue is empty (qne=0) and the
TSC692E is in execution mode, the TSC692E holds until STDFQ instruction has completed execution.

UNIMP Unimplemented FP
operation

If an unimplemented FPop has been issued to the TSC692E but has not yet caused a trap, the TSC692E
holds on the next floating–point instruction issued by the TSC691E.

If the TSC692E goes into exception mode, FHOLD is deasserted. If there is a floating–point sequence error (see Section
3.3.3), FHOLD is asserted for two cycles. This is the only case where FHOLD is asserted in the exception mode.

If a floating–point trap condition occurs while FHOLD is asserted, FHOLD is deasserted at least one cycle after FEXC
is asserted. Similarly, if FCCV is deasserted, it is reasserted at least one cycle after FEXC is asserted. For the FHOLD
case, the TSC691E takes the FP trap on the FP instruction that triggered the FHOLD.

3.2.2.3. FNULL Signal

FNULL is used to signal a pipeline delay of the TSC691E by the TSC692E. FNULL replaces FCCV and FHOLD for
informing the system that the pipeline is being held. FNULL is asserted when either FHOLD is asserted or FCCV is
deasserted. This signal is used as an input by the CC and MMU to monitor pipeline freezes initiated by the TSC692E.

3.3. TSC692E Programming Model

3.3.1. TSC692E Registers

The TSC692E has three types of user accessible registers: the f registers, the FP queue, and the Floating–point Status
Register (FSR). The f registers are the TSC692E data registers. The FSR is the TSC692E status and operating mode
register. The FP queue contains the TSC692E instruction that has started execution and is awaiting completion. The
following section describes these registers in detail.

3.3.1.1. f Registers

The TSC692E provides 32 registers for floating–point operations, referred to as f registers. These registers are 32 bits
in length, which can be concatenated to support 64–bit double words. Extended precision instructions are not supported
in the TSC692E. Figure 13. illustrates the data organization for the f registers.

Integer and single precision data requires a single 32–bit f register. Double precision data requires 64 bits of storage
and occupies an even–odd pair of adjacent f registers.

The TSC692E forces register addressing to match the data type specified by the floating–point instruction. This ensures
data alignment in the f register file for double precision data. Figure 14. illustrates how the TSC692E uses the five
register address bits in a floating–point instruction for the different types of data. Single data word transfers (integer,

TSC692E

15Rev. H – 02 Dec. 96

single–precision floating–point) can be stored in any register. Consequently, all five bits of the register address
specified in the floating–point instruction are valid. Double precision data must reside in an even–odd pair of adjacent
registers. By ignoring the LSB of the register address for a FPop requiring a register pair, the TSC692E ensures data
alignment.

Single precision or signed integer data

Double precision data

f0 f1 f2 f3
f4 f5 f6 f7
f8 f9 f10 f11

f12 f13 f14 f15
f16 f17 f18 f19
f20 f21 f22 f23
f24 f25 f26 f27
f28 f29 f30 f31

MSWMSW LSW LSW

Figure 12. f Register Organization

rd, rs1,
or rs2 field

of FP instruction

Single precision and integer data

Double precision data

All five bits of register address are used

LSB is ignored

Figure 13. f Register Addressing

3.3.1.2. FP Queue

The TSC692E maintains a floating–point queue of the instruction that has started execution, but has yet to complete
execution. The FP queue is used to accommodate the multiple clock nature of floating–point instructions and to support
the handling of FP exceptions.

When the TSC692E encounters an exception case, it asserts FEXC and enters pending exception mode. The TSC692E
remains in pending exception mode until the TSC691E encounters another floating–point instruction, at which time
the TSC691E asserts the FXACK signal to force the TSC692E into exception mode. When the TSC692E enters the
exception mode, floating–point execution halts until the FP queue is emptied. This allows the TSC691E to store the
floating–point instructions under execution when the exception case occurred. Emptying the FP queue frees the
TSC692E for use by the trap handler without losing the pre–exception state of the TSC692E.

The FP queue contains the 32–bit address and 32–bit FPop instruction of one instruction under execution.
Floating–point load and store instructions and FP branch instructions are not queued. The entry of the FP queue is
accessible by executing the store double floating–point queue (STDFQ) instruction. A load FP queue instruction does
not exist, as the FP queue must be loaded by launching instructions.

TSC692E

16 Rev. H – 02 Dec. 96

RD RP TEM NS R VERSION FTT QNE R FCC AEXC CEXC

TEM AEXC CEXC

nvm ofm ufm dzm nxm nva ofa ufa dza nxa nvc ofc ufc dzc nxc

31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

Figure 14. Floating–Point Status Register

3.3.1.3. Floating–Point Status Register (FSR)

The following paragraphs describe the bit fields of the floating–point status register (FSR). Refer to Table 5.
(following page) for bit assignments for the FSR fields.

RD FSR(31:30). Rounding Direction: These two bits define the rounding direction used by the TSC692E during an
FP arithmetic operation.

RP FSR(29:28). Unused - always set to 0.

TEM FSR(27:23). Trap Enable Mask: These five bits enable traps caused by FPops. These bits are ANDed (1= enable,
0= disable) with the bits of the CEXC (current exception field) to determine whether to force a floating–point exception
to the TSC691E. All trap enable fields correspond to the similarly named bit in the CEXC field (see below). The TEM
field only affects which bits in the CEXC field will cause the FEXC signal to be asserted.

NS FSR(22). Non–Standard floating point: This bit is always set to 0 (IEEE mode).

version FSR(19:17). The version number is used to identify the SPARC floating–point processor type. This field is
set to 100 (4H) for the TSC692E, and is read–only.

FTT FSR(16:14). Floating–point Trap Type: This field identifies the floating point trap type of the current FP
exception. This field can be read and written, and must be cleared by software.

QNE FSR(13). Queue Not Empty: This bit signals whether the FP queue is empty. (0= empty, 1= not empty)

FCC FSR(11:10). Floating–point Condition Codes: These two bits report the FP condition codes (see Table 5.).

AEXC FSR(9:5). Accumulated EXCeptions: This field reports the accumulated FP exceptions that are masked by the
TEM field. All masked exception cases are ORed with the contents of the AEXC and accumulated as status. All
accumulated fields have the same definition as the corresponding field for CEXC (see below). This field can be read
and written, and must be cleared by software (see Table 5.).

CEXC FSR(4:0). Current EXCeptions: This field reports the current FP exceptions. This field is automatically cleared
upon the execution of the next floating–point instruction. CEXC status is not lost upon assertion of a floating–point
exception, because instructions following a valid exception are not executed by the TSC692E. The five CEXC bits are:

nvc = 1 indicates invalid operation exception. This is defined as an operation using an improper operand
value. An example of this is 0/0.

ofc = 1 indicates overflow exception. The rounded result would be larger in magnitude than the largest
normalized number in the specified format.

ufc = 1 indicates underflow exception. The rounded result is inexact, and would be smaller in magnitude
than the smallest normalized number in the indicated format.

dzc = 1 indicates division–by–zero: X/0, where X is subnormal or normalized. Note that 0/0 does not set
the dzc bit.

nxc = 1 indicates inexact exception. The rounded result differs from the infinitely precise correct result.

R FSR 21,20 and 12. Reserved - always set to 0.

TSC692E

17Rev. H – 02 Dec. 96

Table 5. Floating–Point Status Register Summary

Field Values
FSR
bits

Description Loadable by
LDFSR

RD 0 - Round to nearest (tie-even) 31:30 Rounding Direction yes

1 - Round to 0

2 - Round to +

3 - Round to -

RP Unused Bits 29:28 Unused always set to 0 no

TEM 0 - Disable trap 27:23 Trap Enable Mask yes

1 - Enable trap

NVM 27 invalid operation trap mask

OFM 26 overflow trap mask

UFM 25 underflow trap mask

DZM 24 divide by zero trap mask

NXM 23 inexact trap mask

NS

0 - Disable

1 - Enable

22

Non–standard Floating–point:
0 = IEEE mode; multiplier and ALU generate denormalized
operand exceptions and produce unrounded normalized values
on underflow exceptions.
1 = FAST mode; multiplier and ALU flush denormalized
operands to zero and round underflow results to zero.

no

version 0 - 7 19:17 FPU version number no

FTT 0 - None 16:14 Floating–point trap type no

1 - IEEE Exception

2 - Unfinished FPop

3 - Unimplemented FPop

4 - Sequence Error

5 - Data Bus Error

6 - Restartable Error

7 - Non-Restartable Error

QNE 0 - queue empty 13 Queue Not Empty no

FCC 0 - = 11:10 Floating–point Condition Codes yes

1 - <

2 - >

3 - Unordered

AEXC 9:5 Accrued Exception Bits yes

NVA 9 accrued invalid exception

OFA 8 accrued overflow exception

UFA 7 accrued underflow exception

TSC692E

18 Rev. H – 02 Dec. 96

Loadable by
LDFSR

DescriptionFSR
bitsValuesField

DXA 6 accrued divide by zero exception

NXA 5 accrued inexact exception

CEXC 4:0 Current Exception Bits yes

NVC 4 current invalid exception

OFC 3 current overflow exception

UFC 2 current underflow exception

DZC 1 current divide by zero exception

NXC 0 current inexact exception

r Always set to 0
21, 20,

12
reserved bits no

3.3.2. TSC692E Floating–Point Instructions

SPARC floating–point instructions are separated into three groups: floating–point load/store, floating–point branch
(FBfcc), and floating–point operate instructions (FPops). Floating–point load/store instructions are used to transfer
data to and from the data registers (f registers). FP load/store instructions also allow the TSC691E integer unit to read
and write the floating–point status register (FSR) and to read the entry of the floating–point queue. Floating–point load
and store instructions are executed by both the TSC691E and the TSC692E; the TSC691E supplying all address and
control signals for memory access and the TSC692E loading or storing the data.

Floating–point branch (FBfcc) instructions (and coprocessor branch instructions (CBccc)) are executed by the
TSC691E, since the TSC691E is responsible for generating address and control signals for memory access. Conditional
FBfcc branches are based upon the FCC[1:0] signals supplied by the TSC692E. FCC[1:0] is set by executing a FCMP
instruction, which belongs to the FPop group of instructions. Floating–point branch instructions will cause the
TSC691E to recognize a pending floating–point exception in the same manner as other floating–point instructions (see
Section 3.3.3).

FPops include all other floating–point instructions executed by the TSC692E. Floating–point operate instructions
(FPops) include basic numeric operations (add, subtract, multiply, and divide), conversions between data types, register
to register moves, and floating–point number comparison. FPops operate only on data in the floating–point registers.

The SPARC architecture supports four data types: 32–bit signed integer, single–precision FP, double–precision FP, and
extended–precision FP. Extended precision instructions are defined in the SPARC architecture, but are not supported
in the TSC692E. The TSC692E supports execution of extended precision floating–point instructions by asserting an
unimplemented instruction trap. This allows the TSC691E to trap to a software emulation of extended precision
floating–point.

Seven load/store instructions are executed by the TSC692E. The following describes the TSC692E load/store
instructions:

LDF and LDDF transfer data from memory to f registers 32 and 64 bits at a time, respectively.

STF and STDF transfer data from the f registers to memory in data widths of 32 and 64 bits.

LDFSR and STFSR allow the FSR to be read and written to.

STDFQ is a privileged instruction which allows the FP queue to be read.

All FPops operate only on data located in the f registers. The FPops are divided into four groups: basic arithmetic
operations, compares, format conversions, and register–to–register moves. Move operations do not cause exceptions.
The converts, moves and the square root instruction use only a single source operand. FP compare instructions modify
only the FCC[1:0] signals. FPops are dispatched in one cycle in the TSC691E, and require multiple cycles to execute
in the TSC692E.

Table 6. and Table 7. illustrate the TSC692E instructions and their execution cycle count. For further information on
the SPARC floating–point instructions, please refer to Chapter 6, SPARC Instruction Set.

TSC692E

19Rev. H – 02 Dec. 96

Table 6. Floating–Point Load and Store Instruction Cycle Count

Mnemonic Operation Cycles

LDF load floating–point 2

LDDF load double floating–point 3

LDFSR load FSR 2

STF store floating–point 3

STDF store floating–point double 4

STFSR store FSR 3

STDFQ store double FP queue 4

TSC692E

20 Rev. H – 02 Dec. 96

Table 7. Floating–Point Operate (FPops) Instruction Cycle Count

Mnemonic Operation Cycles[a]

Min. Max. Typ.

FABSs absolute value 2 2 2

FADDs add single 4 4 17

FADDd add double 4 4 17

FCMPs compare single 4 4 15

FCMPd compare double 4 4 15

FCMPEs compare single and exception if unordered 4 4 15

FCMPEd compare double and exception if unordered 4 4 15

FDIVs divide single 6 20 38

FDIVd divide double 6 35 56

FMOVs move 2 2 2

FMULs multiply single 5 5 25

FMULd multiply double 7 9 32

FNEGs negate 2 2 2

FSQRTs square root single 6 37 51

FSQRTd square root double 6 65 80

FSUBs subtract single 2 4 17

FSUBd subtract double 4 4 17

FdTOi convert double to integer 7 7 14

FdTOs convert double to single 3 3 16

FiTOs convert integer to single 5 6 13

FiTOd convert integer to double 4 6 13

FsTOi convert single to integer 6 6 13

FsTOd convert single to double 2 2 14

[a]. These cycle counts assume that the operands are available in the register file. A load-use interlock may add up to 2 cycles to the typical
cycle count.
[b]. Max. Cycles is for NaN and Denormalized subresults.

3.3.3. TSC692E Internal Operation

The TSC692E operates in one of three modes: execution mode, pending exception mode, and exception mode (see
Figure 16.). After reset, the TSC692E enters execution mode, which is the normal mode of operation. When the
TSC692E encounters a floating–point exception condition, the TSC692E asserts FEXC and enters the pending
exception mode. All FPop instructions under execution at this point are suspended. The TSC691E asserts FXACK and
enters the floating–point trap when the next floating point instruction is encountered. Upon receiving FXACK, the
TSC692E FPU enters exception mode. The TSC692E returns to execution mode as soon as the trap handler empties
the FP queue using STore Double Floating–point Queue instructions (STDFQ).

3.3.3.1. Exception Handling

Upon encountering an exception condition, the TSC692E asserts FEXC to notify the TSC691E that a floating–point
exception has occurred and enters the pending exception mode. The TSC691E enters the trap handler on the next

TSC692E

21Rev. H – 02 Dec. 96

floating–point instruction it encounters in the instruction stream, asserting FXACK to signal to the TSC692E that the
trap is being taken. At this point, the TSC692E enters exception mode and the FP queue contains instruction and address
of the FP operation which caused the FP exception (see Figure 16.).

Upon receiving FXACK from the TSC691E, the mode of the TSC692E changes from pending exception to exception
mode. An FP exception can only be caused while the FPU is moving between these two modes or by executing STDFQ
when FP queue is empty (qne field in FSR equal to 0). All FPops in the TSC692E stop executing during pending
exception and exception modes. While in exception mode, the TSC692E will execute only store floating–point
instructions until the FP queue is emptied. All floating–point store instructions are allowed while in this operating mode
(particularly STDFQ and STFSR) and they cannot cause an exception trap. Any load or FPop issued to the TSC692E
while in this mode causes a sequence error and returns the TSC692E to exception pending mode and sets the ftt
sequence error field in FSR. The instruction that caused the sequence error is not entered into the FP queue. Once the
queue is emptied by STDFQ instruction, the TSC692E returns to execution mode.

If a STDFQ instruction is executed when the FP queue is empty (qne field in FSR equal to 0, FPU in execute mode),
the FPU generates an immediate trap and sets the ftt field in FSR to sequence error, but the FPU remains in the execute
mode.

Figure 17. illustrates the handshake of signals between the TSC691E and the TSC692E during a floating–point
exception. The qne (queue not empty) bit of the FSR is shown in Figure 17. to illustrate the dependency of clearing
the FP queue to return to execution mode.

FP EXCEPTION

Execution

Pending

ExceptionException

Empty FP queue

FXACK

Sequence error

Reset

Figure 15. FPU Operation Modes

TSC692E

22 Rev. H – 02 Dec. 96

CLK

QNE

FEXC

FXACK

FLUSH

STDFQ instructions are executed and queue
is cleared; QNE field of FSR = 0;
Return to execution mode of TSC692E

Floating point exception occurs;
FEXC = 0
Pending exception mode of 90C602E

TSC691E executes FP instruction,
takes FP trap; FXACK = 1; FLUSH = 1
Exception mode of TSC692E

Figure 16. Floating–Point Exception Handshake

3.3.4. TSC692E IEEE–754 Compliance

The TSC692E meets the requirements of the IEEE Std. 754–1985 for floating–point arithmetic. Accuracy of the results
of its operations are within ±1⁄2 LSB, as specified by the IEEE standard. The following sections describe the IEEE
format as implemented on the TSC692E.

3.3.4.1. IEEE Definitions

The following terms are used extensively in describing the IEEE–754 floating–point data formats. This section is
directly quoted from the IEEE Standard for Binary Floating–Point Arithmetic.

biased exponent

The sum of the exponent and a constant (bias) chosen to make the biased exponent’s range nonnegative. (Note
in the remainder of this section, the term “exponent” refers to a biased exponent.)

binary floating–point number

A bit string characterized by three components: a sign, a signed exponent and a significand. Its numerical
value, if any, is the signed product of its significand and two raised to the power of its exponent.

Denormalized

Denormalized numbers are those numbers whose magnitude is smaller than the smallest magnitude
representable in the format. They have a zero exponent and a denormalized non–zero fraction. Denormalized
fraction means that the hidden bit is zero.

The TSC692E can directly operate on denormalized operands. The TSC692E never assert an unfinished FPop
exception when an operation results in a denormalized number.

denormalized number

(DNRM) A non–zero floating–point number whose exponent has a reserved value, usually the format’s
minimum, and whose explicit or implicit leading significand bit is zero. (Denormalized numbers are also
referred to as subnormal in this text.)

fraction

The field of the significand that lies to the right of its implied binary point.

NaN

Not a number, a symbolic entry encoded in floating–point format. They are used to signal invalid operations
and as a way of passing status information through a series of calculations. NaNs arise in one of two ways: they
can be generated by the TSC692E upon an invalid operation or they may be supplied by the user as an input

TSC692E

23Rev. H – 02 Dec. 96

operand. NaN is further subdivided into two categories: quiet and signaling. Signaling NaNs signal the invalid
operation exception whenever they appear as operands. Quiet NaNs propagate through almost every
arithmetic operation without signaling exceptions.

Normalized

Most calculations are performed on normalized numbers. For single–precision, they have a biased exponent
range of 1 to 255, which results in a true exponent range of -126 to +127. The normalized number type implies
a normalized significand (hidden bit is 1).

significand

The component of a binary floating–point number that consists of an explicit or implicit leading bit to the left
of its implied binary point and a fraction field to the right.

true exponent

The component of a binary floating–point number that normally signifies the integer power to which 2 is
raised in determining the value of the represented number.

Zero

The IEEE zero has all fields except the sign field equal to zero. The sign bit determines the sign of zero (i.e., the
IEEE format defines a +0 and a -0).

3.3.4.2. IEEE Floating–point Data Formats

The TSC692E directly supports single– and double–precision floating–point data formats. Extended–precision
instructions (non-implemented) encountered by the TSC692E cause an unimplemented instruction trap to be asserted
by the TSC692E. This allows software to emulate extended–precision instructions through the use of a trap handler.
Single– and double-precision formats are described in this section.

fraction (f)exponent (e)(s)

31 30 23 22 0

MSB LS
B

Figure 17. Single–Precision Floating–Point Format

fraction (f)exponent (e)(s)

63 62 52 51 0

MSB LS
B

32 31

word 0 word 131 0 31 0

Figure 18. Double–Precision Floating–Point Format

3.3.4.2.1. Single–Precision Floating–Point

Single–precision floating–point data are 32–bits wide and consist of three fields: a single sign bit (s), an eight–bit biased
exponent (e), and a 23–bit fraction (f). Figure 18. illustrates the single–precision floating–point format.

The IEEE standard defines single–precision floating–point numbers according to the following conventions:
(+0, -0) If e = 0 and f = 0, then the value V = (-1)s * (0) Note that two representations of zero

exist, one positive and one negative

DNRM (denormalized) If e = 0 and f ≠ 0, then the value V = DNRM

Normalized If 0 < e < 255, then value V = (-1)s * (2e-127) * (1.f) Note that 1.f is the significand.
The one to the left of the binary point is the so–called “hidden bit.” This bit is not

TSC692E

24 Rev. H – 02 Dec. 96

stored as part of the floating–point word; it is implied. For a number to be
normalized, it must have this one to the left of the binary point.

(+�, –�) If e = 255 and f = 0, then value V = (-1)s ∗ �

NaN (not a number) If e = 255 and f ≠ 0, then value V = NaN.

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the
first bit of the fraction is 0 (at least one bit must be non–zero).

3.3.4.2.2. Double–Precision Floating–Point

Double–precision floating–point data are 64–bits wide and consist of three fields: a single sign bit (s), an eleven–bit
biased exponent (e), and a 52–bit fraction (f). Figure 19. illustrates the double–precision floating–point format.

The IEEE standard defines double–precision floating–point numbers according to the following conventions:

(+0, -0) If e = 0 and f = 0, then value V = (-1)s * (0)

DNRM If e = 0 and f ≠ 0, then value V = DNRM

Normalized If 0 < e < 2047, then value V = (-1)s * (2e-1023) * (1.f)

(+�, –�) If e = 2047 and f = 0, then value V = (-1)s * �

NaN If e = 2047 and f ≠ 0, then value V = NaN.

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first bit of the fraction is 0
(at least one bit must be non–zero).

3.3.5. NaN Format

The TSC692E uses different NaN format. Table 8. and Table 9. give returned values for untrapped floating-point
result.

Table 8. Untrapped FP result in same format as operand

RS2, RS1 number QNaN2 SNaN2

none IEEE 754 QNaN2 ME_NaN

number IEEE 754 QNaN2 ME_NaN

QNAN1 QNaN1 QNaN1 ME_NaN

SNAN1 ME_NaN ME_NaN ME_NaN

- QNaN results have their sign bit equal to 0.

- ME_NaN is 0x 7fff 0000 (Single Precision)

- ME_NaN is 0x 7fff e000 0000 0000 (Double Precision)

Table 9. Untrapped FP result in different format

RS2 Operation +QNaN -QNaN +SNaN -SNaN

fstoi +imax -imax +imax -imax

fstod (QNaN2) (QNaN2) ME_NaN ME_NaN

fdtos ME_NaN ME_NaN ME_NaN ME_NaN

fdtoi +imax -imax +imax -imax

- -imax is 0x 8000 0000

- +imax is 0x 7fff ffff

- (QNaN2) is a copy of the mantissa bits of the operand, with the extra low

- order bits zeroed, and the sign bit zeroed

TSC692E

25Rev. H – 02 Dec. 96

3.3.6. TSC692E Exception Cases

The following section describes the TSC692E exception cases, including exceptions specified by the IEEE–754
standard.

Unfinished FPop. In IEEE-754 standard, this exception case can occur when operations on normalized floating–point
numbers either encounter a denormalized operand or produce a denormalized result. This exception case is asserted
upon executing any FPop encountering a NaN as one of the operands. The TSC692E never asserts this exception since
all implemented instructions are executed within hardware.

Unimplemented FPop. This exception is asserted by the TSC692E upon encountering a defined SPARC FPop
instruction that is not supported by the TSC692E. This includes all operations using extended–precision format
operands. The trap handler is expected to emulate the unimplemented instruction.

Sequence Error. This exception is asserted by the TSC692E when a floating–point instruction (other than FP store)
is attempted after the TSC692E has entered either pending exception or exception mode. The TSC692E suspends all
instruction execution with the exception of FP stores until the FP exception has been acknowledged and the FP queue
has been cleared.

IEEE Exceptions. This class of exceptions is defined as part of the IEEE–754 Standard. The five exceptions defined
as IEEE Exceptions are reported in the CEXC and AEXC fields of the FSR. These exceptions are: invalid, overflow,
underflow, division–by–zero, and inexact. The only exceptions that can coincide are inexact with overflow and inexact
with underflow. The following paragraphs discuss these exception cases.

Invalid Operation. The invalid operation exception is signaled if an operand is invalid for the operation to be
performed. The result, when the exception occurs without a trap, shall be a quiet NaN provided the destination has a
floating–point format. The invalid operations are

1 - Any operation on a signaling NaN

2 - Addition or subtraction: Magnitude subtraction of infinities such as (+) + (-)

3 - Multiplication: 0 x �

4 - Division: 0/0 or � / �
5 - Square root if the operand is less than zero

6 - Conversion of a binary floating–point number to an integer or decimal format when overflow,

 infinity, or NaN precludes a faithful representation in that format and this cannot otherwise be signaled

7 - Floating–point compare operations: when one or more of the operands are NaN

Division–by–zero.

 If the divisor is zero and the dividend is a finite nonzero number, then the division by zero exception shall be signaled.
The result, when no trap occurs, shall be a correctly signed 1.

Overflow.

 The overflow exception shall be signaled whenever the destination format’s largest finite number is exceeded in
magnitude by what would have been the rounded floating–point result were the exponent range unbounded. The result,
when no trap occurs, shall be determined by the rounding mode and the sign of the intermediate result as follows:

1- Round to nearest carries all overflows to 1 with the sign of the intermediate result

2 - Round toward 0 carries all overflows to the format’s largest finite number with the sign of the

intermediate result.

3 - Round toward - carries positive overflows to the format’s largest positive finite number, and carries

 negative overflows to –�.

4 - Round toward + carries negative overflows to the format’s most negative finite number, and carries

 positive overflows to +�.

Underflow.

The TSC692E asserts an underflow exception when the rounded result is inexact and would be smaller in magnitude
than the smallest normalized number in the specified format.

TSC692E

26 Rev. H – 02 Dec. 96

Inexact.

The inexact exception is generated whenever there is a loss of accuracy (or significance) in the result. The TSC692E
computes results to higher precision than the number of fraction bits in the format. If any of the fraction bits to the right
of the LSB was one prior to rounding, the inexact exception is signaled.

3.4. TSC692E Signal Descriptions

The following sections describe the external signals of the TSC692E. Active low signals are marked with an overbar,
active high signals are not.

3.4.1. Integer Unit Interface Signals

FP active-low output (Floating–point Present):

This signal indicates to the TSC691E that a FPU is present in the system. In the absence of a FPU, this signal is pulled
up to VCC by a resistor. This is a static signal; it always asserts a low output. The TSC691E generates a floating–point
disable trap if FP is not asserted during the execution of a floating–point instruction. FP is three-state output controlled
by TOE signal.

FCC[1:0] output (Floating–point Condition Codes):

The FCC[1:0] bits indicate the current condition code of the FPU, and are valid only if FCCV is asserted. FBfcc
instructions use the value of these bits during the execute cycle if they are valid. If the FCC[1:0] bits are not valid, then
FCCV is released, which HALTs the TSC691E until the FCC bits become valid. FCC[1:0] is three-state output
controlled by TOE signal.

Table 10. FCC[1:0] Condition Codes

FCC1 FCC0 Condition

0 0 equal

0 1 Op1 < Op2

1 0 Op1 > Op2

1 1 Unordered

FCCV output (Floating–point Condition Codes Valid):

The TSC692E asserts the FCCV signal when the FCC[1:0] represent a valid condition. The FCCV signal is deasserted
when a pending floating–point compare instruction exists in the floating–point queue. FCCV is reasserted when the
compare instruction is completed and FCC bits are valid. FCCV is three-state output controlled by TOE signal.

FHOLD output (Floating–point HOLD):

The FHOLD signal is asserted by the TSC692E if it cannot continue execution due to a resource or operand
dependency. The TSC692E checks for all dependencies in the decode stage, and if necessary, asserts FHOLD in the
next cycle.

The FHOLD signal is used by the TSC691E to freeze its pipeline in the same cycle. The TSC692E must eventually
de–assert FHOLD to release the TSC691E pipeline. FHOLD is three-state output controlled by TOE signal.

FEXC output (Floating–point EXCeption):

The FEXC is asserted if a floating–point exception has occurred. It remains asserted until the TSC691E acknowledges
that it has taken a trap by asserting FXACK.

Floating–point exceptions are taken only during the execution of a floating–point instruction. The TSC692E releases
FEXC when it receives FXACK. FEXC is three-state output controlled by TOE signal.

FEXC is also asserted when an error occurs (in that case HWERROR will be also asserted).

TSC692E

27Rev. H – 02 Dec. 96

FIPAR output (Floating–point Unit to Integer Unit Control Parity):

This signal contains the odd parity over the FCC[1:0], FCCV, FEXC and FHOLD bits. The parity bit is generated by
the FPU and will be checked by the IU. FIPAR is three-state output controlled by TOE signal.

FXACK input (Floating–point eXception ACKnowledge):

The FXACK signal is asserted by the TSC691E to acknowledge to the TSC692E that the current FP trap is taken.

INST input (INSTruction fetch):

The INST signal is asserted by the TSC691E whenever a new instruction is being fetched. It is used by the TSC692E
to latch the instruction on the D[31:0] bus into the FPU instruction buffer.

The TSC692E has two instruction buffers (D1 and D2) to save the last two fetched instructions (see Figure 3.). When
INST is asserted, the new instruction enters the D1 buffer and the old instruction is pushed into the D2 buffer.

FINS1 input (Floating–point INStruction in buffer 1):

The FINS1 signal is asserted by the TSC691E during the decode stage of a FPU instruction if the instruction is stored
in the D1 buffer of the TSC692E. The TSC692E uses this signal to launch the instruction in the D1 buffer into its execute
stage instruction register.

FINS2 input (Floating–point INStruction in buffer 2):

The FINS2 signal is asserted by the TSC691E during the decode stage of a FPU instruction if the instruction is stored
in the D2 buffer of the TSC692E. The TSC692E uses this signal to launch the instruction in the D2 buffer into its execute
stage instruction register.

FLUSH input (Floating–point instruction fLUSH):

The FLUSH signal is asserted by the TSC691E to signal to the TSC692E to flush the instructions in its instruction
registers. This may happen when a trap is taken by the TSC691E. The TSC691E will restart the flushed instructions
after returning from the trap.

FLUSH has no effect on instructions in the floating–point queue. In addition to freezing the FPU pipeline, the TSC692E
uses FLUSH to shut off the D bus drivers during store operations. To ensure correct operation of the TSC692E, FLUSH
must not change state more than once during a clock cycle.

IFPAR input (Integer Unit to Floating–point Unit Control Parity):

This signal contains the odd parity over the FINS1, FINS2, FLUSH, FXACK and INST bits. The parity bit is generated
by the IU and will be checked by the FPU.

3.4.2. Coprocessor Interface Signals

CHOLD input (Coprocessor HOLD):

The CHOLD signal is asserted by the coprocessor if it cannot continue execution. The coprocessor must check all
dependencies in the decode stage of the instruction and assert the CHOLD signal, if necessary, in the next cycle. The
coprocessor must eventually de–assert this signal to unfreeze the TSC691E and TSC692E pipelines. The CHOLD
signal is latched with a transparent latch in the TSC692E before it is used.

CCCV input (Coprocessor Condition Codes Valid):

The coprocessor asserts the CCCV signal when the CCC[1:0] represent a valid condition. The CCCV signal is
deasserted when a pending coprocessor compare instruction exists in the coprocessor queue. CCCV is reasserted when
the compare instruction is completed and the CCC[1:0] bits are valid. The TSC692E will enter a wait state if CCCV
is deasserted. The CCCV signal is latched with a transparent latch in the TSC692E before it is used.

3.4.3. System/Memory Interface Signals

A[31:0] input (Address bus [31:0]):

The address bus for the TSC692E is an input–only bus. The TSC691E supplies all addresses for instruction and data
fetches for the TSC692E. The TSC692E captures addresses of floating–point instructions from the A[31:0] bus into
the DDA register. When INST is asserted by the TSC691E, the contents of the DDA is transferred to the DA1 register.

TSC692E

28 Rev. H – 02 Dec. 96

APAR input (Address Bus Parity):

This signal is used by the FPU to check the odd parity over the 32-bit address.

D[31:0] input/output (Data bus [31:0]):

 The D[31:0] bus is driven by the FPU only during the execution of floating–point store instructions. The store data
is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during the second
data cycle of a store single access and on the second and third data cycle of a store double access. The data alignment
for load and store instructions is done inside the FPU. A double word is aligned on an eight–byte boundary. A single
word is aligned on a four–byte boundary. When output, D[31:0] is three-state controlled by DOE signal.

DPAR bidirectional (Data Bus Parity):

 This signal contains the odd parity over the 32-bit bidirectional data bus. In case of store data operations the parity
bit is generated and launched in parallel by the FPU. In case of load data operations the parity is checked by the FPU.
When output, DPAR is three-state controlled by DOE signal

DOE input (Data Output Enable):

The DOE signal is connected directly to the data output drivers and DPAR driver and must be asserted during normal
operation. Deassertion of this signal three–states all output drivers on the data bus and DPAR signal. This signal should
be deasserted only when the bus is granted to another bus master, i.e, when either BHOLD, CHOLD, MHOLDA, or
MHOLDB is asserted.

TOE input (Test Output Enable):

The TOE signal allows to disable all output control signals (except TAP signals): FNULL, FP, FCC[1:0], FCCV, FEXC,
FHOLD, FIPAR, HWERROR and MCERR.

MHOLDA, MHOLDB input (Memory HOLD):

Asserting MHOLDA or MHOLDB freezes the TSC692E pipeline. Either MHOLDA or MHOLDB is used to freeze
the FPU (and the IU) pipelines during a cache miss (for systems with cache) or when slow memory is accessed.

BHOLD input (Bus HOLD):

This signal is asserted by the system’s I/O controller when an external bus master requests the data bus. Assertion of
this signal will freeze the FPU pipeline. External logic should guarantee that after de–assertion of BHOLD, the state
of all inputs to the chip is the same as before BHOLD was asserted.

MDS input (Memory Data Strobe):

The MDS signal is used to load data into the FPU when the internal FPU pipeline is frozen by assertion of MHOLDA,
MHOLDB.

FNULL output (FPu NULLify cycle):

This signal signals to the memory system when the TSC692E is holding the instruction pipeline of the system. This
hold would occur when FHOLD is asserted or FCCV is deasserted. This signal is used by the memory system in the
same fashion as the integer unit’s INULL signal. The system needs this signal because the IU’s INULL does not take
into account holds requested by the FPU. FNULL is three-state output controlled by TOE signal.

RESET input (RESET):

Asserting the RESET signal resets the pipeline and sets all registers (except f registers) and the writable fields of the
FSR to zero. The RESET signal must remain asserted for a minimum of nine cycles. It is protected by a glitch removal
filter and pulses which are so short that they are detected only during one clock period are not influencing the FPU.
RESET signal is also protected with two-rail coding and an error detected will lead to a trap and indicate Internal Parity
Error.

HWERROR output (ERROR State):

This signal is asserted whenever an error occurs in the FPU. The FPU will enter the exception pending mode and will
assert FEXC. HWERROR is deasserted when FTT field in FSR is changed.

TSC692E

29Rev. H – 02 Dec. 96

CMODE input (Master/checker operation):

Assertion of this signal sets the FPU to act as a checker only in a master/checker configuration. All output signal except
HWERROR, MCERR and TAP signals will be high «Z». CMODE is a static signal and will not change when
running.The CMODE signal may only be changed when the RESET and/or the HALT signal is asserted.

MCERR output (Comparison Error):

This signal is asserted in checker mode when a comparison error occurs on the internal signals vis-a-vis the output
signals of the master FPU. In single mode, this signal is asserted when a stuck-at fault is detected between pin and output
buffer. It is deasserted when the error disappears.

602MODE input (Normal 602MODE Operation):

Forcing this input low disables the parity checking of all input signals. This means the TSC692E will operate with
standard input signals.Nevertherless, internal parity check remains active and parity on the data and address bus is
generated internally. 602MODE is a static signal and will not change when running. The 602MODE signal may only
be changed when the RESET and/or the HALT signal is asserted.

HALT input (HALT Mode):

When asserted this input will freeze the FPU pipeline and the clock. All information placed in the registers of the FPU
remains unchanged. By deasserting HALT, execution of the FPU will resume.

Data valid on output buffers before HALT was asserted are restored after deassertion of HALT.

When the FPU is in HALT mode, the TAP is still operating.

3.4.4. TAP signals

TCLK input (JTAG Test Clock)

JTAG test clock input.

TMS input (JTAG Test Mode Select)

The TMS signal is interpreted by the TAP controller to control test operations. Received signals are sampled at the
rising edge of the TCLK signal.

TDI input (JTAG Test Data Input)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on
the sequence previously applied to the TMS signal. Received input data is sampled at the rising edge of the TCLK
signal.

TRST input (JTAG Test RESET)

The TAP’s test logic is RESET when a logical 0 is applied to this port.

TDO output (JTAG Test Data Output)

Depending on the sequence previously applied to the TMS input, the content of either the instruction register or the
data register are serially shifted out toward the TDO output. Data out of TDO are clocked at the falling edge of the
TCLK signal. TDO should be in the inactive state except when scanning is in progress (use of three-state driver).

3.4.5. Power and Clock Signals

CLK input (CLocK):

 The CLK signal is used for clocking the FPU’s pipeline registers. It is high during the first half of the processor cycle
and low during the second half. The rising edge of CLK defines the beginning of each pipeline stage in the FPU.

VCCO, VCCI, VCCT input (Power):

These pins provide +5V power to various sections of the processor. Power is supplied on three different busses to
provide clean, stable power to each section: output drivers, main internal circuitry, and the input circuits.

TSC692E

30 Rev. H – 02 Dec. 96

VCCO pins supply the output driver;

VCCI pins supply main internal circuitry;

 VCCT pins supply the input circuit.

VSSO, VSSI, VSST input (Ground):

These pins provide ground return for the power signals. Ground is supplied on three different busses to match the power
signals to each section:

VSSO pins for the output driver;

VSSI pins for the main internal circuitry;

VSST pins for the input circuit bus.

4. Fault Tolerant and Test MECHANISM.

FAULT TOLERANT MECHANISM:
� Parity checking on 100% of the total number of latches with hardware error traps

� Parity checking of address, data pads and control pads

� Master/Checker operation

� Parity on odd and even bits of the register file for a better detection of SEU

� Fabricated using Atmel Wireless & Microcontrollers Space hardened 0.8 µm SCMOS technology

TEST MECHANISM:
� IEEE Standard Test Access Port & Boundary-Scan Architecture

� Internal Scan Path to test the internal parity error detection during off-line test

� Possibility to HALT the FPU by an external signal

4.1. Fault Tolerant and Test Support Signals

Some signals have been added for fault tolerant and test MECHANISM improvement. Those new signals can be
classified as follow:

4.1.1. Parity Checking

Address Parity Checking:

APAR - Address Bus Parity (input)

Data Parity Checking:

DPAR - Data Bus Parity (bidirectional)

FPU control signal Parity Checking:

IFPAR - IU to FPU Control Parity (input)

FIPAR - FPU to IU Control Parity (output)

Parity Checking Error Output

HWERROR - Error State (output)

Note that all parity bits are defined as odd parity over the concerned busses. The odd parity definition is:

the number of ones in a word, including the parity bit, is always odd (eg 00000000 --> P = 1, 00000001 --> P = 0)

TSC692E

31Rev. H – 02 Dec. 96

4.1.2. Master/Checker Mode

CMODE - Checker Mode (input)

MCERR - Comparison Error (output)

4.1.3. Test Access Port

TCLK - Test Clock (input)

TRST - Test RESET (input)

TMS - Test Mode Select (input)

TDI - Test Data Input (input)

TDO - Test Data Output (Output)

4.1.4. Miscellaneous

602MODE - Normal 602MODE Operation (input)

HALT - HALT (input)

4.2.Parity Checking

4.2.1. Introduction

In the TSC692E, 98% of the FPU registers are parity bit protected. Address and data busses, control signals to and from
IU are also parity protected. Checking of registers and busses is performed only if the register or the bus is used by the
current instruction. With this approach, unused registers/busses will not cause an error and downtime of the system
will be limited.

The parity checking is disabled during and after RESET until the latches used are set. During Initialization sequence,
all internal registers (7 registers, FSR) must be written in order to initialize the clock bits. All internal registers (except
f registers) and all writable fields of FSR are set to zero when asserting RESET.

4.2.2. Error handling scheme in TSC692E

Since the FPU only performs calculations, the solution for handling all errors detected by the internal concurrent error
detection in the FPU is to handle them as exceptions and enter the cause in the FTT field in the FSR. The FTT field
is three bit and is coded to get eight trap types. The solution is to define the trap types used for internal error to be trap
types number 5 to 7.

The FPU can signal parity errors externally by using signal HWERROR. The FPU will enter the exception pending
mode and FEXC will be asserted in the same cycle as HWERROR. The address and the failing FP operate instruction
are stored in the queue. Analysis of error type is possible by software assistance by reading FSR. Three error types are
defined:

Data Bus Error (FTT field of FSR equal to 5)

This type of error concerns parity errors on the data bus.

Restartable Error (FTT field of FSR equal to 6)

This type of error concerns parity errors in the FPU that were detected before changing the FPU state and could be
removed by restarting the instruction (IU to FPU control bus, ...).

Non-Restartable Error (FTT field of FSR equal to 7)

This type of error concerns parity errors that were detected after the state of the FPU was changed and could not be
removed by restarting the instruction (FSR, Register File,...).

HWERROR will be asserted low in case of any of above errors, and stay asserted until the next FPop encountered in
the instruction stream (after a STDFQ instruction) modifies the FTT field of FSR.

When multiple hardware traps occur at the same cycle, the highest priority trap is taken, and lower priority traps are
ignored. The priority applied on the hardware traps of the FPU are defined as follow:

TSC692E

32 Rev. H – 02 Dec. 96

Table 11. priority within traps

FSR.tt Type of trap priority

1,2,3,4 IEEE,unfinished,Unimp,Seq.Err traps 4

5 Data Bus Error trap 2

6 Restartable Error trap 3

7 Non restartable trap 1

Note: Priority 1 is for highest priority.

4.2.3. Parity Checking on Control Pads for the FPU

The control signals between the IU and the FPU are protected by a parity bit.

4.2.3.1. Input control signals

There is a five bit input control bus: FINS1, FINS2, FLUSH, FXACK and INST.

The parity input pad for these five signals is IFPAR (IU to FPU PARity).

This parity bit is generated by the IU.

4.2.3.1.1. Output control signals

There is a five bit output control bus: FCC<1:0>, FCCV, FEXC and FHOLD.

The parity output pad for these signals is FIPAR (FPU to IU PARity).

This parity bit is generated by the FPU and checked by the IU.

FIPAR is three-state output controlled by TOE signal.

4.2.4. Parity Checking on address bus

The 32 bit address bus contains a parity bit calculated by the IU and sent out on the APAR pad. The parity bit is checked
by the FPU for all FPop instructions and it will generate a Non Restartable trap only in the case of a STDFQ instruction.

4.2.5. Parity Checking on data bus

The DPAR bidirectional signal contains the odd parity over the 32-bit data bus.

When the FPU receives a data (LOAD) or an instruction, the parity bit is checked by the FPU.

In case of a STORE data instruction, the parity bit is generated and launched in parallel by the FPU.

DPAR is three-state output controlled by DOE signal.

4.2.6. Internal Parity Checking

All internal registers are parity protected. The FPU includes parity generation and checking on all internal datapaths
(see Figure 20. , page 45)(see Figure 21. , page 46).

4.2.7.Non RT 602 Mode

To be able to use normal IU (i.e. TSC691E), parity on the data bus has to be generated internally and parity checking
on the control bus must be turned off. Nevertheless, internal parity check remains active.

This feature is controlled by asserting the 602MODE input signal. 602MODE is a static signal and will not change when
running.

TSC692E

33Rev. H – 02 Dec. 96

SL1 SL2

Register B

Shift
Left Right

Shift

Adder

Register T

Constant

Register C

SL2

XY

SR1

1

y x

4-level Carry-Save Adder

Init Carry

Carry Sum

8 Bits/Cycle

Multiplier

SL1

Fractional Datapath

Register A

PG

PC

PG

PG

PC

PG

P P

PG

PC

PG

P

PG

PC

PG

P

ERROR ERROR

ERROR

ERROR

(PG: Parity Generator, PC: Parity Checker)

0

P P

PG PG

PC
ERROR

PC

PG PG

ERROR

Figure 19. Parity Checking on Fractional Datapath

TSC692E

34 Rev. H – 02 Dec. 96

Register A Register B

Adder

Constant

XY

y x

«0»

Normalizer

Exponent Datapath

«0»

SR1

P P

PG

PC

PG

PG

PG

PC ERROR ERROR

 (PG: Parity Generator, PC: Parity Checker)

Figure 20. Parity Checking on Exponent Datapath

4.3. Master/checker Operation

The TSC692E includes comparator circuits at the outputs to support fault detection. Applications requiring a high level
of reliability can use this Master/Checker operation to introduce fault behavior on system level. By duplication of units
and without the use of external comparators 100% of the internal errors are detected, especially those errors that are
not detected by the internal concurrent error detection MECHANISM.

TSC692E

35Rev. H – 02 Dec. 96

4.3.1. Basic function

By programming of the CMODE signal, the TSC692E can be configured either as master or checker. The master and
at least one checker circuit are working in parallel and execute the same program. While the master is forcing the data
bus, the checker is in a read and compare mode. This means the output buffers are disabled and the external busses
are compared by the checker with its internal results. If a mismatch occurs on any output, then the MCERR signal is
asserted. In this case, the system hardware and/or software can take appropriate action.

If the master FPU signals an internal error before a comparison error is indicated, it is possible to stop execution of
the two FPUs by asserting the HALT signal, disable the master FPU, change the slave FPU to master FPU and continue
execution. CMODE signal can be changed when RESET signal is asserted or when the FPU is in HALT mode.

An external/internal mismatch can occur for two reasons.

First, a short or other electrical failure can force the output signal to a fixed voltage. For example, a bus signal can be
shorted to ground. When the circuit drives a high voltage on the bus, the external signal will be pulled low and a
mismatch will occur.

The second way is that an external/internal mismatch can occur in the master/checker mode. Figure 22 shows a basic
master/checker configuration using two TSC692E devices.

Using the master/checker solution there is a possibility that the system can continue with the correct remaining unit
or with both after restoration of state of the faulty unit. If an internal error is indicated in the checker, it could be ignored.
The TSC693E requires error signals from both the master and the checker. In case of corruption the system behavior
is defined by the TSC693E.

The FPU shall also use the Master/Checker function in single mode for detection of stuck-at-one and stuck-at-zero
faults on the checked buffers (asserting then MCERR for Master FPU).

On a master processor, the three-state control signals (DOE and TOE) disable the checker mode of the three-stated
buffers.

MASTER FPU CHECKER FPU

Address

Data

Control

HALT HALT

CMOD = 0

HWERROR

MCERR

CMOD = 1

HWERROR

MCERR

Figure 21. Master/Checker configuration

4.3.2. Master/Checker signals

CMODE input (Master/checker operation):

Assertion of this signal sets the FPU to act as a checker only in a master/checker configuration. All output signal except
HWERROR, MCERR and TAP signals will be high «Z». CMODE is a static signal and will not change when
running.The CMODE signal may only be changed when the RESET and/or the HALT signal is asserted.

MCERR output Comparison Error:

This signal is asserted in checker mode when a comparison error occurs on the internal output signals (except
HWERROR and TAP signals) vis-a-vis the output signals of the master FPU. It is deasserted when the error disappears.

TSC692E

36 Rev. H – 02 Dec. 96

4.4. IEEE Standard Test Access Port & Boundary-Scan Architecture

The FPU includes a Test Access Port (TAP) interface (IEEE standard 1149.1). This interface is used for debugging
and test purposes.

This interface provides standardized approaches to:
testing the interconnections between integrated circuits once they have been assembled onto a printed circuit board
or other substrate.
support of testing the integrated circuit itself.
observing or modifying activity during the component’s normal operation.

4.4.1. TAP signals

The Test Access Port includes the following five connections: TCLK, TMS, TRST, TDI and TDO. Dedicated TAP
connections are required to allow access to the full range of mandatory features of this standard.

TCLK (input)

The Test Clock Input provides the clock for the test logic defined by this standard.The IEEE standards requires that
TCLK can be stopped at 0 indefinitely without causing any change to the state of the test logic.

TMS (input)

The signal received by TMS is decoded by the TAP controller to control test operation. TMS is sampled on the rising
edge of TCLK and has to change on the falling edge of TCLK

TDI (input)

Serial test instructions and data are received by the test logic by TDI. TDI is sampled on the rising edge of TCLK and
has to change on the falling edge of TCLK.

TRST (input)

The TRST input provides for asynchronous initialization of the TAP controller.

TDO (output)

TDO is the serial output for test instructions and data from the test logic defined in the standard.

4.4.2. TAP Controller

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCLK signal of the
TAP and controls the sequence of operations of the circuit defined by the IEEE standard.

4.4.3. The Instruction Register

The Instruction Register allows an instruction to be shifted into the design. The instruction is used to select the test
to be performed or the test data register to be accessed or both. A number of mandatory and optional instructions are
defined by the standard. The instructions SAMPLE/PRELOAD, BYPASS, INTEST and EXTEST are implemented
on this chip.

The private instruction TESTPAR will be implemented to access the internal scan path registers. These registers are
not publicly accessible and will be used to test the internal parity logic.

IR encoding is shown in Table 12.

TSC692E

37Rev. H – 02 Dec. 96

Table 12. Instruction Register Encoding

IR value Instruction Registers

000001 SAMPLE/PRELOAD Boundary Scan Registers

111111 BYPASS Bypass Register

000011 INTEST Boundary Scan Registers

000000 EXTEST Boundary Scan Registers

100000 IDCODE Identification Register

proprietary TESTPAR Internal Scan Registers

4.4.3.1. Design and Construction of the instruction register

The instruction register is a shift-based design having an optional parallel input. These parallel inputs permit capture
of design-specific information in the Capture-IR state. Figure 23 illustrates an example implementation of an
Instruction Register Cell.

G1

1

1
1D

C1

1D

C1

R

Shift IR

Data

From last cell

Clock IR

Update IR

Reset

Instruction
bit

To next cell

Figure 22. Instruction Register Cell

4.4.3.2. BYPASS Instruction

The BYPASS register contains a single shift register stage, used to speed-up shifting at the board level, through
components which are not activated.

4.4.3.3. EXTEST Instruction

EXTEST instruction shall connect the BOUNDARY SCAN register between TDI and TDO. It is used to test
connections between components on the board level. All output signals can be disabled by using the EXTEST
instruction (except TAP).

4.4.3.4. INTEST Instruction

INTEST instruction allows testing of the on-chip system logic while the component is assembled on the board, with
each test pattern and response being shifted through the boundary-scan register.

4.4.3.5. SAMPLE/PRELOAD Instruction

SAMPLE instruction allows normal operation of the system logic with the ability to sample signals entering and
leaving the component without affecting circuit operation.

PRELOAD allows a value to be preloaded on the latched outputs of the boundary scan register. This instruction does
not modify the system behavior.

4.4.4. The Device Identification Register

The Device Identification Register is implemented on this chip. It contains the TSC692E’s assigned component
identifier, 0x0B6410B1. It is selected by the IDCODE instruction.

TSC692E

38 Rev. H – 02 Dec. 96

4.4.5. Internal Scan Path

An Internal Scan Path is implemented to provide the off-line test of the internal parity error detection. This Internal
Scan Path is controlled by the TAP and forces some nodes in the generation circuit of the parity bits. This will then
result in a value with the wrong parity. When this value is read again, an error will be detected if the error detection
works correctly. This chain will have one bit for each parity generator.

4.5. Boundary scan test register

The Boundary-scan technique involves the inclusion of a shift register stage (contained in a Boundary-scan cell)
adjacent to each component pin so that signals at component boundaries can be controlled and observed using scan
testing principles.

Figure 24. illustrates an example implementation for a Boundary-scan cell that could be used for an input or output
connection to an integrated circuit. Dependent on the control signals applied to the multiplexers, data can either be
loaded into the scan register from the Signal-in port (e.g., the input pin), or driven from the register through the
Signal-out port of the cell (e.g., into the core of the component design). The second flip-flop (controlled by clock B)
is provided to ensure that the signals driven out of the cell in the latter case are held while new data is shifted into the
cell using clock A.

G1

1
1 1D

C1

1D

C1

G1

1
1

Scan out

Mode

Signal in

Shift/Load

Scan in Clock A
Clock B

Signal
out

Figure 23. Boundary Scan Cell

4.6. Parity on odd and even bits of the register file bits

It is known that the impact from an SEU may flip adjacent bits in a register file. Those multiple bit errors might be
impossible to detect with one parity bit error. Though these cases with multiple bit errors due to SEU are probably more
rare than one bit errors, they cannot be neglected, especially not in the register file, which corresponds to about 50%
of the entire amount of registers in the FPU.

One solution to this problem is to generate two parity bits for a 32-bits word, one for even bits and one for odd bits.
This is done in the register file and will remove all multiple bit errors due to SEU.

TSC692E

39Rev. H – 02 Dec. 96

5. Electrical and Mechanical Specifications.

5.1. TSC692E Maximum Ratings and DC Characteristics

5.1.1. TSC692E Maximum Rating

Storage Temperature -65 ° C to +150 ° C.

Ambient Temperature with Power Applied -55 ° C to +125 ° C.

Supply Voltage[1] -0.5 V to +7.0 V.

Input Voltage -0.5 V to +7.0 V.

5.1.2. TSC692E Operating Range

Table 13. TSC692E Operating Range

Range Ambient Temperature[a] Vcc

Military -55° C to +125° C 5V +/- 10%

[a]. Ambient temperature is defined as the ‘instant on’ case temperature.

5.1.3. TSC692E DC Characteristics Over the Operating Range

Table 14. TSC692E DC Characteristics over the operating range

Parameters Description Test Conditions Min. Max. Units

VOH Output HIGH Voltage VCC = Min., IOH = -2.0 mA 2.4 V

VOL Output LOW Voltage VCC = Min., IOL = 4.0 mA 0.5 V

VIH Input HIGH Voltage 2.1 VCC V

VIL Input LOW Voltage -0.5 0.8 V

IIZ Input Leakage Current VCC = Max., VSS < VIN < VCC -10 10 µA

IOZ Output Leakage Current VCC = Max., VSS < Vout < VCC -15 15 µA

ISC Output Short Circuit Current VCC = Max., Vout = 0V -30 -350 mA

ICCOP TSC692E Supply Current VCC = Max, f = 14 MHz 180 mA

ICCSB Standby Current Vcc = Max, f=0 MHz 3 mA

Table 15. TSC692E Capacitance Ratings [1]

Parameters Description Max. (pF)

CIN Input Capacitance 10

COUT Output Capacitance 12

CIO Input/Output Bus Capacitance 15

[1]. Tested initially and after any design or process changes that may affect these parameters.
 Test conditions are: VCC = 5.0 V, TA = 25, C.f = 1 MHz

TSC692E

40 Rev. H – 02 Dec. 96

5.1.4. TSC692E AC Test Loads and Waveforms

10%

90% 90%

10%

< 3 ns < 3 ns

5V

OUTPUT

R1

R2

470

319

0 V

3 V

Ohm

Ohm

Test Load Waveform

C =

50pF

Figure 24. TSC692E AC Test Loads and Waveforms

5.2. TSC692E AC Characteristics

Table 16. TSC692E Characteristics at 14/25 MHz

spec. 14 MHz
Parameter Description Ref. Edge Min Max

1 tCY Clock Cycle[a] 71

2 tCHL Clock High and Low 33

3 tAS A[31:0] Setup CLK+ 7

4 tAH A[31:0] Hold CLK+ 6

5 tDIS D[31:0] Input Setup CLK+ 7

6 tDIH D[31:0] Input Hold CLK+ 6

7 tDOD D[31:0] Output Delay CLK- 35

8 tDOH D[31:0] Data Valid CLK- 4

9 tDOFFL D[31:0] Output Turn–off FLUSH+ 56

10 tDOHFL D[31:0] Output Valid FLUSH+ 0

11 tDOFOE D[31:0] Output Turn–off[b] DOE+ 27

12 tDONOE D[31:0] Output Turn–on DOE- 27

13 tDOHOE D[31:0] Output Valid DOE- 0

14 tFIS FINS1/2 Setup CLK+ 40

15 tFIH FINS1/2 Hold CLK+ 2.5

16 tINS INST Setup CLK+ 29

17 tINH INST Hold CLK+ 2

18 tFXS FXACK Setup CLK+ 29

19 tFXH FXACK Hold CLK+ 2

TSC692E

41Rev. H – 02 Dec. 96

spec. 14 MHz

Ref. EdgeDescriptionParameter
 Min MaxRef. EdgeDescriptionParameter

20 tFLS FLUSH Setup CLK+ 38

21 tFLH FLUSH Hold CLK+ 2

22 tRES RESET Setup CLK+ 27

23 tREH RESET Hold CLK+ 3

24 tAtmel MHOLDA Setup [c] CLK- 4

25 tMHH MHOLDA Hold CLK- 9

26 tMDS MDS Setup CLK- 4

27 tMDH MDS Hold CLK- 9

28 tFHD FHOLD Delay CLK- 40

29 tFHH FHOLD Valid CLK- 5

30 tFHDFI FHOLD Delay FINS1/2+ 29

31 tFHDFL FHOLD Delay FLUSH+ 50

32 tFHDMH FHOLD Delay MHOLD- 65

33 tFCCVD FCCV Delay CLK- 40

34 tFCCVH FCCV Valid CLK- 5

35 tFCCVDFL FCCV Delay FLUSH+ 50

36 tFCCVDMH FCCV Delay MHOLD- 65

37 tFCCD FCC[1:0] Delay CLK+ 47

38 tFCCH FCC[1:0] Valid CLK+ 5

39 tFED FEXC Delay CLK+ 47

40 tFEH FEXC Valid CLK+ 5

41 tFND FNULL Delay CLK+ 36

42 tFNH FNULL Valid CLK+ 3

43 tTCY TCLK Clock Cycle 100 1000

44 tTMS TMS Setup TCLK+ 20

45 tTMH TMS Hold TCLK+ 25

46 tTDIS TDI Setup TCLK+ 20

47 tTDIH TDI Hold TCLK+ 25

48 tTRS TRST Setup TCLK+ 20

49 tTRH TRST Hold TCLK+ 25

50 tTDOD TDO Delay TCLK- 45

51 tTDOH TDO Valid TCLK- 5

52 tAPS APAR Setup CLK+ 6

TSC692E

42 Rev. H – 02 Dec. 96

spec. 14 MHz

Ref. EdgeDescriptionParameter
 Min MaxRef. EdgeDescriptionParameter

53 tAPH APAR Hold CLK+ 6

54 tDPIS DPAR Input Setup CLK+ 6

55 tDPIH DPAR Input Hold CLK+ 4

56 tDPOD DPAR Output Delay CLK- 45

57 tDPOH DPAR Output Valid CLK- 4

58 tIFS IFPAR Setup CLK+ 16

59 tIFH IFPAR Hold CLK+ 3

60 tFIPD FIPAR Delay[d] CLK+ 50

61 tFIPH FIPAR Valid CLK+ 5

62 tMCD MCERR Delay CLK+ 45

63 tMCH MCERR Valid CLK+ 5

64 t602S,tCMS 602MODE/CMODE Setup[e] CLK+ 18

65 tHAS HALT Setup CLK- 13

66 tHAH HALT Hold CLK- 4

67 tERD HWERROR Delay CLK+ 45

68 tERH HWERROR Valid CLK+ 5

[a]. Parameter tcrf (Clock rise and fall) is set to 0.8 V/ns (min).
[b]. Idem for TOE and output signals: FCCV, FCC[1:0], FEXC, FHOLD, FNULL, FIPAR and FP (param. 11, 12 and 13)
[c]. This specification applies also to MHOLDB, BHOLD, CHOLD and CCCV signals
[d]. FIPAR evaluated with FHOLD and FCCV sampled on CLK- and latched on CLK+.Needs same logic in IU to calculate correct PARITY
 (param. 60 and 61)
[e]. 602MODE/CMODE shall be changed to be related to positive clock edge during RESET active or HALT active

TSC692E

43Rev. H – 02 Dec. 96

5.2.1. TSC692E AC Waveforms

4
3

A0 A1 A2

FP inst FP inst

5
6

1

CLK

A[31:0]

D[31:0]

INST

FINS1/2

15
14

28

29

A3 A3 A3

2

FHOLD

Figure 25. Floating–Point FHOLD Assertion

602MODE and CMODE shall be changed to be related to positive
clock edge during RESET active or HALT.

CLK

22

23
RESET

 DV/Dt =0.8 V/ ns
2

1

9 CLK Cycles
 Minimum

64

602MODE

CMODE

Figure 26. Clock and RESET Timing

TSC692E

44 Rev. H – 02 Dec. 96

16

A1 A2
FP Load

3

4

LDF

5

6

CLK

A[31:0]

D[31:0]

INST

17

A0 Adr

FP Data

A4 A5

Figure 27. Floating–Point Load Operation

16

A1 A2

STF

17

7

8

5

6

4

3

CLK

A[31:0]

D[31:0]

INST

A4FP St
Add

FP St
AddA0

FP Data

Figure 28. Floating–Point Store Operation

TSC692E

45Rev. H – 02 Dec. 96

10

7

9

CLK

FLUSH

D[31:0]

8

7

MSW LSW

Figure 29. Effect of FLUSH on Store Timing

D[31:0]

A[31:0]

CLK

24
25

26
27

A1 A1

Cache

5

6

Supplied by CC & MMU

FP Load Add.Fp Load
 Add.

 Miss Fp Data

MHOLD

MDS

Figure 30. Floating–Point Load Cache Miss

TSC692E

46 Rev. H – 02 Dec. 96

Fp St

CLK

A[31:0]

D[31:0]

7 8

11 12

24

25

24

25

Add.
Fp St
Add. Fp St. Add. Fp St. Add.

Fp Store Data Fp Store Data

DOE

MHOLD

Figure 31. Floating–Point Store Cache Miss

CLK

A[31:0]

D[31:0]

FINS1/2

FCCV

FCC[1:0]

37 38

34

33

14
15

Fp Inst
 Add

Fp Cmp
 Inst

Figure 32. Floating–Point Compare

TSC692E

47Rev. H – 02 Dec. 96

39

40

21
20

18
19

CLK

A[31:0]

D[31:0]

FLUSH

Fp Inst
 Adr

Fp Inst

Trap

Trap
 Inst

 Adr

FXACK

FEXC

Figure 33. Floating–Point Trap

TCLK

TMS

TDI

TDO

44

45

46

47

50
51

43

48

49

TRST

Figure 34. TAP Signals

TSC692E

48 Rev. H – 02 Dec. 96

CLK

N cycles

67
error detected

FTT field in FSR cleared

6768

in this cycle

HWERROR

Figure 35. HWERROR Timing

DPAR

4

3

A0 A1 A2

FP inst FP inst

5

6

1

CLK

A[31:0]

D[31:0]

A3 A4 A4

2

APAR APAR A1 APAR A2 APAR A3 APAR A4 APAR A4

DPAR

IFPAR

FIPAR

52

53

55
54

58

59

60

61

inst
DPAR

inst

Figure 36. PARITY Signals

TSC692E

49Rev. H – 02 Dec. 96

1

CLK

2

62 63

error

MCERR

Figure 37. MASTER/CHECKER Signals

1

CLK

2

65

66HALT

INTERNAL
CLK

64

66

D1 D2D0 D2 D3OUTPUT
SIGNALS

602MODE and CMODE shall be changed to be related to positive
clock edge during RESET active or HALT.

602MODE

CMODE

Figure 38. HALT Signal

TSC692E

50 Rev. H – 02 Dec. 96

5.3. TSC692E Package Descriptions

5.3.1. 160-Pin MQFP-L Package

TSC692E

51Rev. H – 02 Dec. 96

5.3.2. 160-Pin MQFP-L Pin Assignment

Pin Signal Pin Signal Pin Signal Pin Signal

1 A31 41 CLK 81 TDO 121 VSSI

2 A30 42 VSSI 82 TDI 122 VCCI

3 A29 43 VCCI 83 VCCI 123 VSSO

4 A28 44 VSSO 84 TMS 124 D15

5 A27 45 VCCO 85 TRST 125 VCCO

6 VCCI 46 VCCT 86 VSSI 126 D14

7 A26 47 INST 87 TCLK 127 D13

8 A25 48 FEXC 88 FINS2 128 VCCT

9 A24 49 FP 89 FINS1 129 VCCI

10 A23 50 VSSI 90 VSSI 130 D12

11 A22 51 TOE 91 VSSO 131 D11

12 VSSI 52 MDS 92 D31 132 VSSO

13 A21 53 MHOLDA 93 VCCI 133 VSSI

14 A20 54 VCCI 94 D30 134 VCCO

15 A19 55 MHOLDB 95 VCCO 135 D10

16 A18 56 BHOLD 96 D29 136 D9

17 A17 57 VSSI 97 D28 137 VSSO

18 A16 58 VSSO 98 VSSO 138 D8

19 VSSI 59 FNULL 99 VSSI 139 VCCI

20 A15 60 FHOLD 100 D27 140 D7

21 A14 61 VCCO 101 D26 141 VCCO

22 A13 62 CHOLD 102 D25 142 D6

23 A12 63 RESET 103 VCCO 143 D5

24 VCCI 64 VSSI 104 D24 144 VSSO

25 A11 65 VCCI 105 VCCI 145 D4

26 A10 66 FCCV 106 VSSO 146 VSSI

27 A9 67 FIPAR 107 D23 147 D3

28 A8 68 CCCV 108 D22 148 D2

29 VSSI 69 VSSO 109 VSSI 149 D1

30 A7 70 VSST 110 VSST 150 VCCI

31 A6 71 FCC0 111 D21 151 VSST

TSC692E

52 Rev. H – 02 Dec. 96

SignalPinSignalPinSignalPinSignalPin

32 VSST 72 FCC1 112 D20 152 VCCO

33 A5 73 VCCI 113 VCCO 153 D0

34 A4 74 FXACK 114 VSSO 154 DPAR

35 A3 75 HWERROR 115 D19 155 MCERR

36 A2 76 VSSI 116 VSSI 156 CMODE

37 VCCI 77 FLUSH 117 D18 157 VSSO

38 A1 78 VCCO 118 D17 158 VSSI

39 A0 79 IFPAR 119 D16 159 HALT

40 APAR 80 VSSO 120 DOE 160 602MODE

